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Preface – By the President of SEFI 

 

Dear reader, 

It is with great pleasure that I could present you this book about a framework for Mathematics 

Curricula in Engineering Education.  

As President of SEFI I would first of all like to emphasize that this report illustrates in many ways what 

SEFI stands for. This report is published by the Mathematics Working Group. Working Groups are 

“EFI͛s ǀehiĐle to ďƌiŶg togetheƌ its ŵeŵďeƌs aƌouŶd a particular topic relevant for Engineering 

Education. The Mathematics Working Group has already a long-time history and highly estimated 

track record of activities for all those interested in how Mathematics could be integral part of an 

engineering program. This publication should be seen in the context of this tradition. Of course, the 

ideas have developed over the years, and this new framework gives insight in the current state-of-

the-art in the engineering curriculum design with respect to the integration of Mathematics 

competence development. I am sure you will find pointers in this book to practical implementation 

guidelines for your own practice or you will be intrigued by the principles that are put forward. 

A publication like this one is only possible thanks to the great efforts of many people, SEFI members 

active in the Working Group and others. My highest appreciation goes to all contributors. I would 

especially like to thank our colleague, Prof. Dr. Burkhard Alpers from the Aalen University (Germany), 

as chairman of the Working Group and driving force behind this report. SEFI is proud to have all these 

committed members and partners, and wishes to cherish very much what they together achieve to 

the benefit for the engineering education community in Europe and beyond. 

I wish you lots of inspiration by reading this newest SEFI publication! 

 

Prof. Wim Van Petegem, 

SEFI President 2011-2013  
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Executive Summary 
The goal of “EFI͛s MatheŵatiĐs WoƌkiŶg Gƌoup ;MWGͿ is to pƌoǀide a disĐussioŶ foƌuŵ aŶd 
orientation for those who are interested in the mathematical education of engineering students in 

Euƌope. AŶ iŵpoƌtaŶt ĐoŶtƌiďutioŶ to this goal is the gƌoup͛s ĐuƌƌiĐuluŵ doĐuŵeŶt ǁhiĐh ǁas fiƌst 
issued in 1992. After ten years, in 2002, a second edition was published which brought the document 

more in line with current curriculum practices by formulating a detailed and structured list of 

concrete content-ƌelated leaƌŶiŶg outĐoŵes. DuƌiŶg the last deĐade, iŶ ŵaŶǇ of the MWG͛s seŵiŶaƌs 
the topics of higher-level learning goals and outcomes have been discussed. It is the intention of this 

volume, the third edition of the curriculum document, to state, explain and exemplify a framework 

for systematically including such higher-level learning goals based on state-of-the-art educational 

research. For this purpose, the competence concept developed in Denmark and later adopted in the 

famous OECD PISA study is used. Mathematical competence is the ability to understand, judge, do 

and use mathematical concepts in relevant contexts and situations, which certainly is the 

predominant goal of the mathematical education for engineers. Therefore, the main message of this 

new edition is that although content remains important, knowledge should be embedded in a 

broader view of mathematical competencies.  

This document adapts the competence concept to the mathematical education of engineers and 

explains and illustrates it by giving examples. It also provides information for specifying the extent to 

which a competency should be acquired. It does not prescribe a particular level of progress for 

competence acquisition in engineering education. There are many different engineering branches 

and many different job profiles with various needs for mathematical competencies; consequently it is 

not appropriate to specify a fixed profile. The competence framework serves as an analytical 

fƌaŵeǁoƌk foƌ thiŶkiŶg aďout the ĐuƌƌeŶt state iŶ oŶe͛s oǁŶ iŶstitutioŶ aŶd also as a desigŶ 
framework for specifying the intended profile. A sketch of an example profile for a practice-oriented 

study course in mechanical engineering is given in the document. This document retains the list of 

content-ƌelated leaƌŶiŶg outĐoŵes ;slightlǇ ŵodifiedͿ that foƌŵed the ͚keƌŶel͛ of the pƌeǀious 
curriculum document. These are still important because lecturers teaching application subjects want 

to ďe suƌe that studeŶts haǀe at least aŶ ͚iŶitial faŵiliaƌitǇ͛ ǁith ĐeƌtaiŶ ŵatheŵatiĐal ĐoŶĐepts aŶd 
procedures which they need in their application modelling.  

In order to offer helpful orientation for designing teaching processes, teaching and learning 

environments and approaches are outlined which help students to obtain the competencies to an 

adequate degree. It is clear that such competencies cannot be obtained by simply listening to lec-

tures, so adequate forms of active involvement of students need to be included. Moreover, in a 

competence-based approach the mathematical education must be integrated in the surrounding 

engineering study course to really achieve the ability to use mathematics in engineering contexts.  

The document presents several forms of how this integration can be realized. This integration is 

essential to the development of competencies and will require close co-operation between mathe-

matics academics and their engineering counterparts. Finally, since assessment procedures deter-

mine to a great extent the behaviour of students, it is extremely important to address competency 

acquisition in assessment schemes. Ideas for doing this are also outlined in the document. 

The main purpose of this document is to provide orientation for those who set up concrete 

mathematics curricula for their specific engineering programme, and for lecturers who think about 

learning and assessment arrangements for achieving the intended level of competence acquisition. It 

also seƌǀes as a fƌaŵeǁoƌk foƌ the gƌoup͛s futuƌe ǁoƌk aŶd disĐussioŶs.    
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͞… those ǁho aƌe deǀelopiŶg Ŷeǁ ĐuƌƌiĐula should,  
despite ƌefoƌŵist zeal, pƌoĐeed ǁith due ĐautioŶ.͟ 

Alan H. Schoenfeld (1994) 

1 Introduction – Goals and Use of the Curriculum Document 
WheŶ the “EFI MatheŵatiĐs WoƌkiŶg Gƌoup set up its fiƌst ͞Coƌe CuƌƌiĐuluŵ͟ iŶ ϭϵϵϮ, Peteƌ NüesĐh, 
one of the co-authors and former SEFI president, wrote in his address preceding the curriculum 

(Barry & Steele 1992, p.8): ͞It is hoped that ouƌ Coƌe CuƌƌiĐuluŵ aŶsǁeƌs oŶlǇ the oŶe ǀeƌǇ esseŶtial 
ƋuestioŶ: ǁhat should ďe the ĐoŶteŶt of ŵatheŵatiĐs Đouƌses foƌ eŶgiŶeeƌs?͟ AĐĐoƌdiŶglǇ, the 
͚heaƌt͛ of the ĐuƌƌiĐuluŵ doĐuŵeŶt ĐoŶsisted of a list of topiĐs to ďe dealt ǁith, oƌgaŶised on 

different levels, although it is fair to state that other issues concerning the educational process were 

briefly commented on. For the second edition of the curriculum document in 2002 (Mustoe & 

Lawson 2002), one motivation for change was to bring the curriculum more in line with current 

ĐuƌƌiĐuluŵ pƌaĐtiĐes aŶd ͞… phƌase a ĐuƌƌiĐuluŵ iŶ teƌŵs of leaƌŶiŶg outĐoŵes ƌatheƌ thaŶ a list of 
topiĐs to ďe Đoǀeƌed͟ ;p.ϮͿ. This ƌesulted iŶ a Ƌuite detailed oƌgaŶised list of ĐoŶteŶt-related learning 

outcomes. Moreover, other issues like the role of technology, transition problems and other 

educational goals like communication and modelling were included in a short commentary section.  

During the last decade, in many seminars of the group the topic of higher-level learning goals and 

outĐoŵes aƌose. This ĐaŶ ďe fouŶd speĐifiĐallǇ iŶ the ĐoŶtƌiďutioŶ ďǇ ;Booth ϮϬϬϰͿ oŶ ͞leaƌŶiŶg foƌ 
uŶdeƌstaŶdiŶg͟ aŶd the papeƌ ďǇ ;Caƌdella ϮϬϬϴͿ oŶ usiŶg a ͞ďƌoad ŶotioŶ of ŵatheŵatiĐal 
thiŶkiŶg͟. Although the ĐuƌƌiĐuluŵ doĐuŵeŶt as of 2002 contains some short statements on such 

goals (chapter 4, p.47), it does not apply a systematic approach which could provide a framework for 

other didactical issues in the document. It is the intention of the current third edition of the 

curriculum document to state, explain and exemplify such a framework based on state-of-the-art 

educational research. Nevertheless, contents and content-related learning outcomes still provide 

important orientation for what colleagues in application subjects expect from the mathematical 

education of engineers. Therefore, the main message of this new edition is that although contents 

are still important, they should be embedded in a broader view of mathematical competencies that 

the mathematical education of engineers strives to achieve. The history of the curriculum document 

so faƌ ĐaŶ heŶĐe ďe desĐƌiďed as goiŶg ͚fƌoŵ ĐoŶteŶts to outĐoŵes to ĐoŵpeteŶĐies͛. 

When trying to set up a framework for specifying higher-level goals based on current insights from 

educational research, there are several sources available within the general mathematics education 

community aiming at school mathematics or undergraduate education or both (for an overview of 

curricular trends in tertiary education see (Hillel 2001)). Cardella (2008) proposes to use the aspects 

of mathematical thinking identified by Schoenfeld (1992, 1994) to broaden the view of what 

mathematical education of engineers should strive for. Schoenfeld emphasises that alongside 

content knowledge, there are problem solving strategies, meta-cognitive processes in using 

resources, beliefs and affects and mathematical practices which together make up mathematical 

thinking: 

͞… ŵatheŵatiĐal thiŶkiŶg ĐoŶsists of a lot ŵoƌe thaŶ kŶoǁiŶg faĐts, theoƌeŵs, teĐhŶiƋues, etĐ. 
… I ǁould Đharacterize the mathematics a person understands by describing what that person 

ĐaŶ do ŵatheŵatiĐallǇ, ƌatheƌ thaŶ ďǇ aŶ iŶǀeŶtoƌǇ of ǁhat the peƌsoŶ ͚kŶoǁs.͛͟ ;“ĐhoeŶfeld 
1994) 
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“ĐhoeŶfeld͛s aspeĐts ĐaŶ also ďe fouŶd ǁheŶ oďseƌǀiŶg eŶgiŶeeƌiŶg studeŶts as well as engineers 

working on practical tasks (Cardella 2008).  Asiala et al. (1996) similarly present a broad perspective 

of ͞ǁhat it ŵeaŶs to leaƌŶ aŶd kŶoǁ soŵethiŶg iŶ ŵatheŵatiĐs͟:  

͞AŶ iŶdiǀidual͛s ŵatheŵatiĐal kŶoǁledge is heƌ oƌ his teŶdeŶĐǇ to ƌespond to perceived 

mathematical problem situations by reflecting on problems and their solutions in a social 

context and by constructing or reconstructing mathematical actions, processes and objects and 

organizing these in schemas to use in dealing with the situatioŶs͟.  

In 2004, the Committee on the Undergraduate Program in Mathematics (CUPM) of the Mathematical 

AssoĐiatioŶ of AŵeƌiĐa ǁƌote a ͞CuƌƌiĐuluŵ Guide͟ ǁhiĐh ĐoŶtaiŶs ƌeĐoŵŵeŶdatioŶs that aƌgue 
along similar lines (Barker et al. 2004). Among other items, the recommendations state: 

͞… EǀeƌǇ Đouƌse should iŶĐoƌpoƌate aĐtiǀities that ǁill help all studeŶts pƌogƌess iŶ deǀelopiŶg 
analytical, critical reasoning, problem-solving, and communication skills and acquiring 

ŵatheŵatiĐal haďits of ŵiŶd. … Pƌoŵote aǁaƌeŶess of ĐoŶŶeĐtioŶs to otheƌ suďjeĐts …. AŶd 
stƌeŶgtheŶ eaĐh studeŶt͛s aďilitǇ to applǇ the Đouƌse ŵateƌial to these suďjeĐts. … At eǀeƌǇ leǀel 
of the curriculum, some courses should incorporate activities that will help all students progress 

in learniŶg to use teĐhŶologǇ …͟ ;p.ϭ aŶd p.ϮͿ 

The ƌepoƌt is also ďased oŶ seǀeƌal ǁoƌkshops ǁheƌe ŵeŵďeƌs of ͚paƌtŶeƌ disĐipliŶes͛ ;iŶĐludiŶg 
engineering) stated their understanding of the mathematical qualifications needed for being 

successful in the discipline (Ganter & Barker 2004).  

Finally, in the Danish KOM project a group headed by Niss organised their description of what mathe-

matical education intends to achieve around the notion of competence which also strongly 

influenced the description of educational goals in the famous OECD-PISA study (OECD 2009): 

͞Mathematical competence (in the original italics are used instead of underlining) then means 

the ability to understand, judge, do, and use mathematics in a variety of intra- and extra-

mathematical contexts and situations in which mathematics plays or could play a role. 

Necessary, but certainly not sufficient, prerequisites for mathematical competence are lots of 

faĐtual kŶoǁledge aŶd teĐhŶiĐal skills …͟ ;Niss ϮϬϬϯa, p.ϲ/ϳͿ 

Blomhoj and Jensen (2007, p. 47) put it in a nutshell by defining a mathematical competency (an 

ingredient of mathematical competence) as 

͞… soŵeoŶe͛s iŶsightful ƌeadiŶess to aĐt iŶ ƌespoŶse to a certain kind of mathematical 

challenge (in the original italics are used iŶstead of uŶdeƌliŶiŶgͿ of a giǀeŶ situatioŶ …͟. 

In order to be useful, the KOM project identified a list of such mathematical competencies which 

overlap but have different emphasis: thinking mathematically; posing and solving mathematical 

problems; modelling mathematically; reasoning mathematically; representing mathematical entities; 

handling mathematical symbols and formalism; communicating in, with, and about mathematics; 

making use of aids and tools. This list is explained in more detailed in Niss 2003a,b. It is meant to be  

a framework (like the aspects stated by Schoenfeld) overarching all stages of education including 

tertiary education. For a certain educational setting like engineering education, the specific 

͚ŵatheŵatiĐal ĐhalleŶges͛ haǀe to ďe identified and the competencies must be interpreted in this 

context. In order to describe progress in obtaining the competencies during different stages of 
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education the KOM project identified three dimensions (degree of coverage, radius of action, 

technical level (see Niss 2003a, p. 10)). These can be used to analyse or prescribe in more detail what 

one wants the students to achieve at a certain level of education or for a certain educational profile. 

Even if the above descriptions provide just a glimpse into the concepts that the authors use, they 

show the large degree of commonality in identifying a broader spectrum of goals mathematical 

education should strive for, going far beyond a content-based approach. In this curriculum, we use 

the competence-based framework set up in the Danish KOM project to identify the higher-level goals 

of the mathematical part of engineering education. This is also in line with current trends in general 

eŶgiŶeeƌiŶg eduĐatioŶ ǁheƌe the ŶotioŶ of ͞ĐoŵpeteŶĐe͟ has ďeeŶ used to describe educational 

aĐtiǀities ǁhiĐh faǀouƌ ͞aĐtioŶ-based knowledge over knowledge simply held, in the name of 

performance and effeĐtiǀeŶess͟ ;Leŵaitƌe et al. 2006, p.47). Competence in this sense is 

ĐoŶteǆtualised, i.e. ƌelated to a ͞field of aĐtiǀitǇ, a seƌies of speĐifiĐ tasks … aŶd a giǀeŶ situatioŶ͟ 
;p.ϱϬͿ. Hoǁeǀeƌ, it should ďe Ŷoted that the teƌŵ ͚ĐoŵpeteŶĐe͛ is used ǀeƌǇ diffeƌeŶtlǇ ďǇ ǀaƌious 
authors (even including the meaning of lower-level skill) and that on the other hand other terms like 

͚skill͛, ͚ĐapaďilitǇ͛, ͚ĐapaĐitǇ͛ aƌe used iŶ liteƌatuƌe ǁith a ŵeaŶiŶg siŵilaƌ to the oŶe giǀeŶ foƌ 
͚ĐoŵpeteŶĐe͛ ;foƌ a disĐussioŶ of the ĐoŶfusiŶg usage of these teƌŵs see Leŵaitƌe et al. ;ϮϬϬϲͿͿ. 

The second chapter of this document describes the eight competencies and the three dimensions of 

progress in more detail. Moreover, we give an illustrative engineering mathematics example for the 

competencies. We do not prescribe a particular level of progress for engineering education. On the 

surface, this would facilitate student exchange but it would neglect the difference between study 

courses and hence would have a low probability of being used. The final section in chapter 2 sketches 

how a curriculum for a practice-oriented study course in mechanical engineering could be specified 

using the competence framework.   

The third chapter deals with content-related competencies (learning outcomes) concerning 

kŶoǁledge aŶd skills.  The latteƌ foƌŵed the ͚keƌŶel͛ of the ĐuƌƌiĐuluŵ doĐuŵeŶt as of ϮϬϬϮ. We still 
think that these are important since colleagues teaching application subjects want to be sure that 

studeŶts haǀe at least aŶ ͚iŶitial faŵiliaƌitǇ͛ ǁith ĐeƌtaiŶ ŵatheŵatiĐal ĐoŶĐepts aŶd pƌoĐeduƌes theǇ 
need in their application modelling (as Artigue, Batanero & Kent (ϮϬϬϳ, p.ϭϬϯϰͿ put it: ͞The ƌight 
ďalaŶĐe ŵust ďe fouŶd͟Ϳ. The ĐoŶteŶt-related learning outcomes are organized according to 

mathematical domain. In order to foster mathematical sense-making, we also provide some 

oǀeƌaƌĐhiŶg theŵes like ͚ƋuaŶtitǇ͛ aŶd ͚spaĐe aŶd shape͛ foƌ oƌgaŶisiŶg these outĐoŵes. This ǁas 
also done in the OECD PISA document (OECD 2009).  

IŶ oƌdeƌ to pƌoǀide helpful oƌieŶtatioŶ foƌ desigŶiŶg oŶe͛s oǁŶ teaĐhiŶg, the fouƌth Đhapteƌ outliŶes 
teaching and learning environments which might help students to obtain the competencies to an 

adequate degree. It is clear that such competencies cannot be obtained by just listening to lectures, 

so adequate forms of active involvement of students need to be installed. Topics like transition 

issues, use of technology and integration of mathematics and engineering education are also 

discussed here. The short competency definition by Blomhoj and Jensen (2007) indicates that 

ŵatheŵatiĐal ĐoŵpeteŶĐǇ is stƌoŶglǇ ƌelated to attitude toǁaƌds ŵatheŵatiĐs siŶĐe the ͚ƌeadiŶess͛ 
mentioned in the definition can be expected when one has a somewhat positive attitude with 

respect to its helpfulness. Therefore, this chapter concludes with an outline of the attitude towards 

mathematics that we wish engineering students to develop. 
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Quite understandably, students are also oriented towards getting good marks. Therefore the 

assessment procedures determine to a good extent the behaviour of students and are hence 

important for really achieving progress in competencies. Chapter 5 outlines different forms of 

assessment which might be adequate for capturing certain kinds of achievements. It also discusses 

the role of technology in assessment and the question of identifying requirements for passing. 

The current curriculum document does not prescribe a specific degree of progress relating to 

mathematical competences or a determined set of content-related learning outcomes. The 

engineering profession and hence engineering study programmes at university are far too 

heterogeneous to identify one profile for all. The main purpose of this document is to provide 

orientation for those who set up concrete mathematics curricula for their specific engineering 

programme. The competence framework should help to avoid an approach that is mainly restricted 

to contents. It can be used to analyse existing curricula and to design new ones. It helps institutions 

and lecturers to identify their own profile in that it facilitates the description of the role and 

importance of different competencies and hence their weighting within a study programme. Having 

this in addition to the profile concerning the content-related learning outcomes organised in chapter 

3, the intention stated for the second edition of this curriculum is still valid but from a much broader 

perspeĐtiǀe: ͞This ĐuƌƌiĐuluŵ is iŶteŶded as a ďeŶĐhŵaƌk ďǇ ǁhiĐh higheƌ eduĐatioŶ iŶstitutioŶs iŶ 
Europe can judge the mathematics provision in their engineering undergraduate degree 

pƌogƌaŵŵes.͟ ;Mustoe & LaǁsoŶ ϮϬϬϮ, p. ϮͿ. 

In recent investigations (Cardella 2008; Barker et al. 2004; Ganter & Barker 2004) the importance of 

having close contacts between lecturers in mathematics and engineering departments was 

emphasised. The competencies can also serve for discussing with engineering lecturers in which ways 

the mathematical education of engineers is distributed between mathematics and application 

subjects. The second edition of the curriculum (2002) already states – from a content-related point of 

view – that many of the topics listed on level 3 of the curriculuŵ ǁill ƌatheƌ ďe taught ͞as paƌt of 
uŶits oŶ the eŶgiŶeeƌiŶg topiĐs to ǁhiĐh theǇ diƌeĐtlǇ applǇ.͟ ;Mustoe & LaǁsoŶ ϮϬϬϮ, p. ϰϱͿ. This is 
not only true with respect to contents but definitely also with respect to mathematical competencies 

(or mathematical thinking, cf. Cardella 2008, p. 153). Considering for example the modelling 

competency, setting up models and solving problems within models is certainly an important activity 

in engineering mechanics and in many other engineering subjects that make heavy use of 

mathematics. Having experienced the usage of a mathematical concept in different application 

subjects definitely adds to the mathematical competence of a student in that it makes a concept 

more meaningful and also helps to develop an attitude towards mathematics where the role of the 

latter is perceived as potential problem solver.  

FiŶallǇ, this doĐuŵeŶt is Ŷot ŵeaŶt to ďe a ͚HaŶdďook foƌ the ŵatheŵatiĐal eduĐatioŶ of eŶgiŶeeƌs͛. 
Nevertheless, it intends to give support for thinking about many aspects of mathematics education 

like learning environments and assessment since these are quite important for achieving the 

competencies stated in chapter 2. In this document we merely want to give an overview and to 

provide some guidance. Many of the issues are, and will be, discussed in journal articles and 

contributions to seminars of the working group. The reader is advised to consult the Mathematics 

WoƌkiŶg Gƌoup͛s ǁeďpage foƌ suĐh ŵateƌial aŶd ĐuƌƌeŶt disĐussioŶs ;sefi.htǁ-aalen.de). 
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2 General Mathematical Competencies for Engineers 
As was already stated in the introduction, we adopt the definition of mathematical competence used 

in the Danish KOM project. Hence, we define mathematical competence as ͞the ability to 

understand, judge, do, and use mathematics in a variety of intra- and extra-mathematical contexts 

and situations in which mathematics plays or could play a role͟ (Niss 2003a, p.6/7). In this chapter we 

first give an overview of the constituents of such competence, the mathematical competencies 

identified within the Danish KOM project, and explain their meaning. These competencies are not 

͚ďiŶaƌǇ ǀaƌiaďles͛ ǁhiĐh aƌe pƌeseŶt oƌ Ŷot. IŶ oƌdeƌ to desĐƌiďe the eǆteŶt to ǁhiĐh ĐoŵpeteŶĐies do 
or should exist, the KOM project uses three dimensions: degree of coverage, radius of action and 

technical level. These are explained in the next section. Moreover, the OECD PISA document (OECD 

ϮϬϬϵͿ pƌoǀides a stƌuĐtuƌiŶg of the ĐoŵpeteŶĐies iŶto diffeƌeŶt leǀels, Đalled ͚Đlusteƌs͛ ǁhiĐh ǁill ďe 
adapted to the mathematical education of engineers in the next section. The second section provides 

examples of the competencies in engineering contexts; this serves to illustrate how the competency 

concept can actually be used in concrete engineering education settings to describe the goals of 

mathematics education.  The third section then gives some information on how to specify 

educational profiles using the competency framework.  

2.1 Competencies, Dimensions, and Clusters 

In order to specify in more detail what mathematical competence is, the KOM project set up a list of 

eight competencies which together constitute the overall competence. We reproduce a slightly 

modified version of this list and give some short explanations based on Niss 2003a, p. 7-9. For a more 

detailed description we refer the reader to Niss 2003a,b and the final report of the KOM group (Niss 

& Højgaard 2011). Moreover, the illustrative example in the next section should provide more insight 

into the meaning of the competencies and their application to engineering education. 

1. Thinking mathematically  

This competency comprises a knowledge of the kind of questions that are dealt with in 

mathematics and the types of answers mathematics can and cannot provide, and the ability 

to pose such questions. It includes the recognition of mathematical concepts and an 

understanding of their scope and limitations as well as extending the scope by abstraction 

and generalisation of results. This also includes an understanding of the certainty mathe-

matical considerations can provide. 

2. Reasoning mathematically  

This competency includes on the one hand the ability to understand and assess an already 

existing mathematical argumentation (chain of logical arguments), in particular to under-

stand the notion of proof and to recognise the central ideas in proofs. It also includes the 

knowledge and ability to distinguish between different kinds of mathematical statements 

(definition, if-then-statement, iff-statement etc.). On the other hand it includes the 

construction of chains of logical arguments and hence of transforming heuristic reasoning 

into own proofs (reasoning logically).  

3. Posing and solving mathematical problems  

This competency comprises on the one hand the ability to identify and specify mathematical 

problems (be they pure or applied, open-ended or closed) and on the other hand the ability 

to solve mathematical problems (including knowledge of the adequate algorithms). What 

really constitutes a problem is not well defined and it depends on personal capabilities 
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whether or not a question is considered as a problem. This has to be borne in mind, for 

example when identifying problems for a certain group of students. 

4. Modelling mathematically  

This competency also has essentially two components: the ability to analyse and work in 

existing models (find properties, investigate range and validity, relate to modelled reality) 

aŶd the aďilitǇ to ͚peƌfoƌŵ aĐtiǀe ŵodelliŶg͛ ;stƌuĐtuƌe the paƌt of ƌealitǇ that is of iŶteƌest, 
set up a mathematical model and transform the questions of interest into mathematical 

questions, answer the questions mathematically, interpret the results in reality and 

investigate the validity of the model, monitor and control the whole modelling process). This 

competency has been investigated in more detail in Blomhoj & Jensen (2003, 2007).  

5. Representing mathematical entities  

This competency includes the ability to understand and use mathematical representations 

(be they symbolic, numeric, graphical and visual, verbal, material objects etc.) and to know 

their relations, advantages and limitations.  It also includes the ability to choose and switch 

between representations based on this knowledge. 

6. Handling mathematical symbols and formalism  

This competency includes the ability to understand symbolic and formal mathematical 

language and its relation to natural language as well as the translation between both. It also 

includes the rules of formal mathematical systems and the ability to use and manipulate 

symbolic statements and expressions according to the rules. 

7. Communicating in, with, and about mathematics  

This competency includes on the one hand the ability to understand mathematical 

statements (oral, written or other) made by others and on the other hand the ability to 

express oneself mathematically in different ways. 

8. Making use of aids and tools  

This competency includes knowledge about the aids and tools that are available as well as 

their potential and limitations. Additionally, it includes the ability to use them thoughtfully 

and efficiently. 

These competencies are overlapping (i.e. aspects of one competency are also needed within another, 

for example to express oneself using symbols one needs the competency of handling mathematical 

symbols) but emphasise different aspects and are therefore separated. They can be organised in two 

groups. Competencies 1 to 4 make up ͞the aďilitǇ to ask aŶd aŶsǁeƌ ƋuestioŶs iŶ aŶd ǁith 
ŵatheŵatiĐs͟ ;Niss ϮϬϬϯa, p. ϳͿ ǁheƌeas ĐoŵpeteŶĐies ϱ to ϴ aƌe ĐoŶĐeƌŶed ǁith ͞the aďilitǇ to deal 
with and manage mathematical language and tools͟ ;Niss ϮϬϬϯa, p. ϴͿ. The list is Ŷot deƌiǀed fƌom 

theoretical considerations. Its value lies in leading the thinking process about what we want to 

achieve in the mathematical education of engineers to abilities that are widely accepted as being 

important. This value will become evident in the next section when we present examples. 

If one wants to state for a certain mathematical competency to which extent students should have 

obtained it at a certain stage of their mathematical education, one needs some criteria or dimensions 

for specifying this. In the KOM project, three different dimensions for specifying and measuring 

progress are introduced (Niss 2003a, p. 10):  

 Degree of coverage ͞is the eǆteŶt to ǁhiĐh the peƌsoŶ ŵasteƌs the ĐhaƌaĐteƌistiĐ aspeĐts͟ of 
a competency.  In the short descriptions given above one can already recognise that a 

competency consists of or includes a bundle of components. For example, there often is an 
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͚aŶalǇtiĐ͛ side ƌelated to uŶdeƌstaŶdiŶg aŶd aŶalǇsiŶg eǆistiŶg ͚oďjeĐts͛ ;eǆpƌessioŶs, pƌoofs, 
ŵodels etĐ.Ϳ aŶd a ͚ĐoŶstƌuĐtiǀe͛ side ƌelated to settiŶg up oŶe͛s oǁŶ ͚oďjeĐts͛ ;ĐhaiŶs of 
reasoning, models, texts etc.).  The coverage then might be focussed on one of these sides. 

 The Radius of action Đoŵpƌises the ͞ĐoŶteǆts aŶd situatioŶs iŶ ǁhiĐh a peƌsoŶ ĐaŶ aĐtiǀate͟ a 
competency. If, for example, the modelling competency is restricted to growth or decline 

situatioŶs theŶ this should ďe stated usiŶg the ͚ƌadius of aĐtioŶ͛. If sǇŵďoliĐ ŵaŶipulatioŶ of 
functions is only possible when the independent variable is x and the dependent one is y, this 

is also a restriction of the radius of action. 

 The Technical level ͞iŶdiĐates hoǁ ĐoŶĐeptuallǇ aŶd teĐhŶiĐallǇ adǀaŶĐed the eŶtities aŶd 
tools aƌe ǁith ǁhiĐh the peƌsoŶ ĐaŶ aĐtiǀate the ĐoŵpeteŶĐe͟. Foƌ eǆaŵple, the ŵodelliŶg of 
growth can be restricted to linear models, or the usage of symbolic expressions for the 

computation of areas can be restricted to formulae for simple geometric figures (excluding 

expressions using integrals). 

For the modelling competency, a more comprehensive investigation and exemplification of these 

dimensions can be found in Blomhoj & Jensen (2007). Having a clear perception of the desired 

progress regarding the dimensions is an important prerequisite for setting up learning environments 

(chapter 4) and assessment regimes (chapter 5). In order to specify the desired degree of coverage, 

oŶe ĐaŶ also use the ͚Đlusteƌs͛ desĐƌiďed iŶ the OECD PI“A doĐuŵeŶt ;OECD ϮϬϬϵͿ. Theƌe, thƌee 
diffeƌeŶt leǀels aƌe distiŶguished: the ͚ƌepƌoduĐtioŶ͛ leǀel ǁheƌe studeŶts aƌe aďle to peƌform the 

aĐtiǀities tƌaiŶed ďefoƌe iŶ the saŵe ĐoŶteǆts aŶd situatioŶs; the ͚ĐoŶŶeĐtioŶs͛ leǀel ǁheƌe studeŶts 
ĐoŵďiŶe pieĐes of theiƌ kŶoǁledge aŶd/oƌ applǇ it to slightlǇ diffeƌeŶt ĐoŶteǆts; aŶd the ͚ƌefleĐtioŶ͛ 
level where students use their knowledge to tackle problems different to those dealt with in former 

education and/or do this in new contexts, so they have to reflect on what to use and on the 

possibilities and limitations of using knowledge in different contexts. For example, regarding the 

competency of mathematical thinking, the reproduction level would include the recognition of 

mathematical questions which were similarly posed in earlier educational settings and the ability to 

recall potential answers. Regarding the problem solving competency, this includes the ability to 

recognise and solve well-practised closed-form problem types (most of which can be found in the list 

of learning outcomes in chapter 3) where the solution can be obtained by using well-trained 

procedures. An example for the connections level with respect to the reasoning competency would 

be the connection of well-known arguments to new chains such as using well-known geometric 

arguments to justify why a more complex geometric configuration is determined by some given 

quantities and relations. Finally, an example for the reflection level regarding the modelling 

competency would be a reflection on adequate modelling means and models and the setting up of 

more complex non-familiar models. A reflection about the modelling process itself and the ability to 

describe and justify modelling decisions also belong to this level. A more detailed treatment of the 

levels for each of the eight competencies for a specific study course can be found in section 2.3. 

It is important to have a clear understanding of the relationship between mathematical 

contents/topics and competencies in order to recognize the role contents play in competency-based 

curricula. Niss (2003a, p. 10) suggests viewing competencies and mathematical topic areas as 

͞oƌthogoŶal͟, i.e. to speĐifǇ ͞hoǁ the ĐoƌƌespoŶdiŶg ĐoŵpeteŶĐǇ ŵaŶifests itself ǁheŶ dealiŶg ǁith 
the ĐoƌƌespoŶdiŶg topiĐ at the eduĐatioŶal leǀel at issue͟. HaǀiŶg the diŵeŶsioŶs desĐƌiďiŶg the 
extent to which a competency is present at hand, one can be a bit more specific: Content-related 

aďilities aŶd heŶĐe ĐoŶteŶts appeaƌ iŶ the diŵeŶsioŶ ͚teĐhŶiĐal leǀel͛ ǁheƌe the ŵatheŵatiĐal 
entities and operations to which the competency can be applied are to be specified. In some 
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examples in Niss & Højgaard (2011) the radius of action also includes contents, for example when for 

the problem posing and solving competency different mathematical areas are named to indicate the 

radius of action.  

2.2 Example 

In this section we clarify the competency concept by presenting an example task from mechanical 

engineering where the competencies are necessary for successful work (for more examples cf. the 

appendix 10). The example shows on the one hand what we want students to be able and willing to 

do, and on the other hand what might be an adequate assignment for learning, i.e. for obtaining the 

competencies.  

Example Task: Consider two gears with tooth numbers m and n (see picture below). Each tooth in 

one gear should meet each tooth of the other one (and not just a subset) in order to have equally 

distributed abrasion and low noise excitation. How does this affect the choice of tooth numbers?   

 

Reading this task a student should think that it has to do with integers and relationships between 

integers, so mathematics should provide an answer (thinking mathematically). Then, the require-

ment on the meeting of teeth has to be translated into a mathematical condition including m and n 

applying a respective chain of arguments (reasoning mathematically):  Say, tooth 1 of gear one meets 

first tooth 1 of gear two, then tooth                , i.e.              for any integer  . Therefore, the ŵeetiŶg ĐoŶditioŶ is eƋuiǀaleŶt to ͞for any         there is an integer   such 

that              ͟. Having this condition, one has to solve the problem for which m and n 

the condition is fulfilled. The condition is eƋuiǀaleŶt to ͞for any         there are integers     

such that          ͞. This is eƋuiǀaleŶt to ͞for any           there are integers     

such that        ͞ ǁhiĐh iŶ tuƌŶ is eƋuiǀaleŶt to ͞theƌe aƌe iŶtegeƌs     such that        ͟. Therefore, m and n must be relatively prime, i.e. they have no common factor except 1 

(reasoning mathematically, posing and solving mathematical problems). Another way of tackling this 

task might be to get a book on machine elements, find and understand the respective information in 

this book (making use of aids and tools, communication in, with, about mathematics). 

2.3 Profiles 

Since mathematical competencies are concerned with the ability to master the mathematical 

challenges of given situations, it is a reasonable starting point for specifying a competence profile to 

identify the contexts and situations where students of a certain study course meet mathematical 

challenges.  These then determine the envisaged radius of action for the competencies to be listed 

later. One can then specify in more detail the mathematical concepts and procedures occurring in 
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the challenges identified before as well as the corresponding abilities (technical level) and finally 

elaborate in more detail the aspects of the general competencies which are involved (degree of 

coverage, level). As an example, we roughly sketch below how such a profile could look like for the 

mathematical education of practice-oriented mechanical engineers aiming at a Bachelor degree at a 

university of applied sciences. 

Concerning the mathematical challenges such students of mechanical engineering meet, it seems 

reasonable to inspect the application subjects occurring in the study course and search for those 

challenges. For taking into account later challenges showing up at the workplace, workplace studies 

are required but this is a field where much more research is needed (cf. Alpers 2010). In the following 

we present some contexts and situations containing mathematical challenges which mainly occur in 

engineering mechanics, CAD, measurement and control, and machine elements and dynamics: 

 Determination of loads (forces, torques) and the resulting stress and strains in machine 

elements or other mechanical configurations (the respective models can already be found in 

text books) 

 Varying the dimensions of machine elements or other mechanical configurations in order to 

improve or even optimise ĐeƌtaiŶ pƌopeƌties ;stƌess, ǁeight, Đosts, …Ϳ  
 Analysis of motion and design of motion of machines or machine parts 

 Analysis of vibrations 

 Modelling of controlled devices and design of controllers 

 Processing of measurement data, computation of descriptive quantities and error analysis, 

model fitting for measured data. 

 … 

A systematic investigation is required for achieving a good coverage. Such an investigation can also 

be of great value later on when trying to find good example tasks or themes for mathematical 

application projects. Note that we do not assume that all mathematical challenges occurring in 

application subjects are handled in the mathematical part of engineering education. Nevertheless, 

for providing an integrated study course it is very advantageous to have a clear view of the split of 

responsibility. 

The mathematical concepts and algorithms occurring in the identified contexts include: 

 Functions and functional dependencies, construction of functions with desired properties 

 Using functions foƌ ŵodelliŶg ďehaǀiouƌ ;gƌoǁth/deĐaǇ, ǀiďƌatioŶs, logistiĐ ďehaǀiouƌ, …Ϳ 
 Systems of equations, solution types and algorithms 

 Iterative improvement and optimisation algorithms 

 Geometric descriptions using classical and free-form geometries and their computation 

 Differentiation and integration 

 Differential equations, solution types and algorithms 

 Laplace transforms and working in the complex variable domain 

 Fourier analysis 

 “toĐhastiĐ ĐoŶĐepts like distƌiďutioŶ, ŵeaŶ, ǀaƌiaŶĐe, ĐoŶfideŶĐe iŶteƌǀals, … 

 … 
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In the next step on the technical level one could specify in more detail the abilities chosen from those 

described in chapter 3. 

Finally, one has to specify to which degree the eight competencies have to be covered for 

successfully handling the challenges.  This is ĐeƌtaiŶlǇ a ͚ŶoŶ-tƌiǀial͛ task ŶeediŶg iŶ-depth reasoning. 

As a first approach it is useful to specify in a coarse way the importance of each competency level (or 

cluster) as has been done in the table below.  Note that such an importance specification should 

provide information on what one wants to achieve for all students. It should not prevent institutions 

from offering particularly talented students additional learning experiences for acquiring higher 

levels.   

Competency \ Level Reproduction Connections Reflection 

Thinking math. + + O 

Reasoning math. + O - 

Problem solving + + O 

Modelling math. + + O 

Communication + + O 

Representation + + O 

Symbols and formalism + O - 

Aids and tools + + + 

Meaning of signs: +: very important, O: medium important, -: less important 

As will probably be the case in any other study course, one wants students to be able to master the 

reproduction level completely, so what makes the difference between study courses will be the 

emphasis on the connections and the reflection level.  In the following we provide some additional 

explanatory material just for these two levels within the profile: 

 Regarding the competency of thinking mathematically, students should recognise the 

usefulness of mathematical concepts in situations similar to those encountered before (for 

example in the computation of stress for a different machine element). The recognition of 

the potential of mathematical work in totally new situations (for example recognition that a 

problem in a totally new context could be formulated as a mathematical optimization 

problem) is of medium importance. 

 Regarding the competency of reasoning mathematically, the connections level is of medium 

importance. Students should understand a well-known, not too-complicated mathematical 

argumentation in an application context. They should be able to connect simple geometric 

arguments for determining whether a geometric configuration is fully specified by giving 

some data or deduce consequences from programme results in order to perform plausibility 

checks. The reflection level is of less importance since the engineering students in this profile 

are not required to set up chains of advanced mathematical reasoning (for example to write 

an article in theoretical mechanics).  

 Regarding the competency of problem solving, students should be able to recognise and 

solve problems similar to those learnt before in different contexts (for example solve a linear 

DE with constant coefficients in a different context to the one encountered before). They 

should also be able to work on more open design-type mathematical questions, for example 

the design of a motion function with certain properties or the design of a machine element 

fulfilling certain restrictions regarding stress and geometry. Students should also have – to a 

moderate extent – reflective capabilities concerning problem solving strategies, for example 
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see strategies for parameter variation in order to improve output values. They are not 

required to work on harder mathematical problems for which new strategies are necessary. 

 Regarding the competency of mathematical modelling, students should be able to use well-

known modelling means (like forces, torques, equilibrium principle, cutting principle) learnt 

before (mostly in application subjects) to set up models in different situations (for example 

model a mechanical configuration by identifying important forces and using equilibrium 

equations; use the function concept for modelling motion). Students are not expected to 

develop new modelling means but they should be able to reflect on useful simplifications and 

on the validity of a simplified model.  

 Regarding the competency of communication, students should be able to use simple, mostly 

informal mathematical language encountered before in their mathematical education and 

they should be able to understand such language in application text books and formularies. 

They should be able to informally describe orally and in written form their argumentation or 

procedure for solving a mathematical problem (like parameter variation to improve a 

property) or for setting up and working within a mathematical model. It is less important to 

communicate using formal mathematical language or to communicate more complex logical 

argumentations. 

 Regarding the competency of representing mathematical entities, students should be able to 

understand and use standard representations in the new context of application text books 

(different representations of functions, of geometric entities, but also more advanced 

representations of signal functions in the frequency domain). They should be able to extract 

information from such representations and switch to a particularly meaningful one. Students 

should be able to reflect about advantages and disadvantages of representations but they do 

not have to invent new ones. 

 Regarding the competency of handling mathematical symbols and formalism, students 

should be able to handle symbols and formalism in contexts that are not totally familiar to 

them and where different notations are used (for example s(t) for motion instead of y(x)). 

They are not required to have a deeper understanding of logical formalism (using implication 

and equivalent symbols is sufficient). There also is no necessity of being able to perform large 

and complex formal computations by hand. Invention of new symbols and formalism (as 

usually done by mathematicians) is also of no importance. 

 Regarding the competency of using aids and tools, this is of particular importance in 

engineering work environments where computer programmes are ubiquitous. Students 

should be able to use mathematics programmes in new contexts to solve problems similar to 

those handled before (for example solve a new differential equation with a mathematics 

programme). They should also be able to use books or other text sources (for example 

internet pages) to look up computations or mathematical results that are helpful for working 

on their application problems (for example look up the relationship between tooth numbers 

in the example presented in the previous section). They should also learn to reflect on what 

one can expect from a programme based on a certain mathematical model for the 

application situation. Moreover, they should be able to check the correct working of a 

programme by using simple examples computed by hand.  

The above sketch is meant to provide a rough impression of how a concrete curriculum based on this 

document can look like. Considerably more effort is necessary to complete this to a full specification 

(cf. Alpers 2013). 
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3 Content-related competencies, knowledge, and skills 
In the first OECD PISA study and in national or regional curricula developed in response to the results 

of the study (for example (KMK 2003), (Ministry of Education Baden-Württemberg 2004)), more 

detailed content-related competencies, knowledge and skills have been identified since the general 

competencies are not sufficient for guiding teaching in the secondary education environment. In this 

chapter we apply a similar approach for engineering education.  

The content-related learning outcomes have been arranged in a structure which has four levels. 

These levels represent an attempt to reflect the hierarchical structure of mathematics and the way in 

which mathematics can be linked to real applications of ever-greater sophistication as the student 

progresses through the engineering degree programme. 

 

Schematic diagram of the proposed structure 

A schematic diagram of the proposed structure is shown in the figure above. Note that there is a 

central core of material essential for all engineering graduates. Typically this core material would be 

covered by the end of the first year but the teaching of some of it might extend into the second year 

of a course. Realistic pre-requisite knowledge (Core Zero) would be assumed. Core Zero, as set out in 

Section 3.1, does not represent the minimum which can be assumed in every European country. 

Instead it is covers those topics which make up an essential foundation for Core Level 1 and beyond. 

It is likely that most institutions will need to teach explicitly some of Core Zero topics whilst other 

institutions may have a parallel programme of support classes or clinics to help students who may be 

deficient in some areas. 

Core Zero is specified in Section 3.1 in considerable detail. It comprises such essential material that 

only minor omissions are acceptable. The knowledge and skills in mathematics of a student entering 

tertiary education is not easily predicted from the qualifications achieved prior to entry and some 

kind of diagnostic testing and additional support may be needed. This support may well be needed 

throughout the first year of an engineering degree programme. 

Core level 1 comprises the knowledge and skills which are necessary in order to underpin the general 

Engineering Science that is assumed to be essential for most engineering graduates. Items of basic 

knowledge will be linked together and simple illustrative examples will be used. It should be pointed 

out that the mathematical needs of Computer Science and Software Engineering are markedly 

different from all other branches of engineering. This core curriculum is only of limited use for such 

courses. 

Specialist Modules 

Core 

Electives 

Core Zero 

Level  1 

Level  2 

Level  3 
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Level 2 comprises specialist or advanced knowledge and skills which are considered essential for 

individual engineering disciplines. Synoptic elements will link together items of knowledge and the 

use of simple illustrative examples from real-life engineering. 

Level 3 comprises highly specialist knowledge and skills which are associated with advanced levels of 

study and incorporates synoptic mathematical theory and its integration with real-life engineering 

examples. Students would progress from the core in mathematics by studying more subject-specific 

compulsory modules (electives). These would normally build upon the core modules and be expected 

to correspond to the outcomes associated with level 2 material. Such electives may build additionally 

on level 1, requiring knowledge of more advanced skills, and may link level 1 skills or introduce 

additional more engineering-specific related topics. An example of the first mode is that Mechanical 

Engineering students may need to study the vibration of mechanical systems through the applied use 

of systems of ordinary differential equations. Here, topics that build on foundations of differential 

calculus, complex numbers and matrix analysis might be expected to be covered in level 1, as these 

are topics probably learnt in isolation and without reference to specific engineering application. 

Alternatively an Electronic Engineering student may be required to learn elements of discrete 

mathematics directly relevant to the design and study of computer systems; these would probably be 

unsuitable for core material for all engineers. This is not to say that discrete mathematics should not 

be taught at level 1, but the context and outcomes need to be clearly discernible within the level. 

Typically level 2 modules would be distributed within the second or third year of an Engineering 

course due to the logistics of level 1 prerequisites. 

Students within the more numerate Engineering disciplines might be expected to take further more 

specialised modules incorporating mathematics on an optional basis, aimed to help match their 

career aspirations with appropriate theoretical formation. These modules will be at an advanced 

level, making use of appropriate technology, and heavily influenced with examples from engineering. 

Teaching of these level 3 modules would be most appropriate in year 3 or 4 of a degree course. It is 

likely that many of these topics already exist within specialist engineering courses and typically the 

mathematics is embedded and taught by engineers, mathematicians or both. For some programmes 

meeting the highest requirements, students might be expected to study some topics close to current 

areas of research where the available techniques and tools may well be mathematically based. 

Within the three main levels the material has been arranged under five sub-headings: analysis and 

calculus, discrete mathematics, geometry, linear algebra, statistics and probability. There is no 

intention to prescribe how the topics in the Core Curriculum should be ordered: what is offered here 

is a convenient grouping of items. In many cases a topic could have been placed under one of the 

other sub-headings. The curriculum is specified in terms of content and learning objectives. This 

makes the document longer, but it makes more explicit exactly what is required and is therefore 

more transparent for both teacher and learner. 

IŶ oƌdeƌ to fosteƌ ͚oǀeƌaƌĐhiŶg͛ seŶse ŵakiŶg, iŶ the OECD PI“A studǇ aŶd iŶ otheƌ doĐuŵeŶts the 
content-related competencies have not been organized according to the traditional areas of 

ŵatheŵatiĐs ďut ƌatheƌ aloŶg soŵe geŶeƌal theŵes, Đalled ͚oǀeƌaƌĐhiŶg ideas͛ iŶ OECD ϮϬϬϵ. The 
ideas stated theƌe aƌe ͚ƋuaŶtitǇ͛, ͚spaĐe aŶd shape͛, ͚ĐhaŶge aŶd ƌelatioŶships͛, aŶd ͚uŶĐeƌtaiŶtǇ͛ 
(OECD 2009, p. 93-104). A similar rearrangement can be made regarding engineering education. In 

the following, we reuse themes stated in (Ministry of Education Baden-Württemberg 2004) for the 

grades 6 to 12 and add some new ones that are specific to engineering education: 
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 Quantity: In university education, the means of quantification are extended in several ways. 

The set of complex numbers is introduced as extension of the reals ǁheƌe ͚ŵoƌe͛ opeƌatioŶs 
are possible. Another extension are vectors as a concept for modelling quantities which 

cannot just be described by one number since they also have a direction or are multi-valued. 

Thirdly, the ubiquitous work with computers makes it necessary to be aware of the 

restrictions of computer-representable numbers and the corresponding numerical problems. 

 Measuring: Measuring of geometric objects is extended to objects with curved boundary 

Đuƌǀes oƌ suƌfaĐes ďǇ ĐoŶsideƌiŶg theŵ as ͚iŶfiŶite suŵ of iŶfiŶitelǇ sŵall ƋuaŶtities͛.  
Moreover, the measurement is not restricted to measuring geometric properties but also 

application quantities like moment of inertia or electric charge. The measurement can also 

be done in an approximative way when discrete data representations of the curved objects 

are used.  

 Space and shape: Engineering students have to extend their understanding of space to 

multi-dimensional vector spaces and recognize which properties of the three dimensional 

real space are retained. Regarding shape, formal mathematical description is no longer 

restricted to a set of simple geometries (lines, surface, bodies) but can be extended to 

arbitrary geometries (free form geometries). 

 Functional dependency: The understanding of functional dependency acquired at school is 

extended to functional dependency of multidimensional quantities which might also be 

complex. Another aspect of the theme of functional dependency is the design of such 

dependencies in different engineering areas, e.g. in motion design. 

 Relations between functions: There are relationships between functions and their deriva-

tives (rates of change) leading to differential equations. There are relationships between 

functions which can be understood as transformations (building derivative and integral, 

Laplace or Fourier transforms). Moreover, functions that are finite or infinite combinations 

of basic functions can be considered. 

 Data and chance: Handling of data, deterministic or based on random processes, is 

ubiquitous in engineering.  Often data have to be fitted to mathematical models by using 

interpolation or approximation methods.  Quantities with values influenced by chance are 

modeled as random variables and adequate probability models based on properties of the 

quantity must be found. 

 Algorithms: Algorithms as methods for computing and constructing mathematical objects 

are important for getting an understanding of what kind of problems can be solved when 

working within a mathematical model. There are symbolic algorithms and numerical 

algorithms, both having their specific advantages and disadvantages which need to be 

known for making an adequate choice of what to use to tackle a specific problem. 

 Modelling: Modelling application behaviour is a general theme in engineering. This 

comprises functional dependency models, equation models, differential equation models, 

diffeƌeŶtial ŵodels ;usiŶg ͚iŶfiŶitelǇ sŵall oďjeĐts͛ as liŵits of fiŶitelǇ sŵall oďjeĐtsͿ. 
Engineers should recognise the same mathematical model (structure) in different 

applications and value the advantage of abstraction and reuse of formalism, knowledge of 

properties and algorithms.  

These themes can be used by a lecturer for offering a wider perspective to the students by 

embedding a specific mathematical topic into an overarching mathematical context. They can also be 
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used in projects where students investigate the basic concepts within a theme and their extension by 

using more advanced concepts. 

3.1 Core Zero 

The material in this section is the material which ideally should have been studied before entry to an 

undergraduate engineering degree programme. However, it is recognised that whilst there is some 

commonality across Europe over what is studied in pre-university mathematics, there are also a 

number of areas of difference. Core Zero does not consist of just those topics which are taught in 

school in all European countries, rather it contains material which together forms a solid platform on 

which to build a study of engineering mathematics at university. A consequence of this is that in 

many countries it will be necessary to cover some Core Zero material during the first year of a 

university engineering course. 

The material in Core Zero has been grouped into five areas: Algebra, Analysis  &  Calculus, Discrete 

Mathematics, Geometry  &  Trigonometry and Statistics  &  Probability. These relate to the five areas 

in each of the three main levels of the curriculum: Analysis  &  Calculus, Discrete Mathematics, 

Geometry, Linear Algebra and Statistics  &  Probability. 

Algebra 

Arithmetic of real numbers 

As a result of learning this material you should be able to 

• carry out the operations add, subtract, multiply and divide on both positive and negative 

numbers 

• express an integer as a product of prime factors 

• calculate the highest common factor and lowest common multiple of a set of integers 

• obtain the modulus of a number 

• understand the rules governing the existence of powers of a number 
• combine powers of a number 

• evaluate negative powers of a number 

• express a fraction in its lowest form 

• carry out arithmetic operations on fractions 

• represent roots as fractional powers 

• express a fraction in decimal form and vice-versa 

• carry out arithmetic operations on numbers in decimal form 

• round numerical values to a specified number of decimal places or significant figures 

• understand the concept of ratio and solve problems requiring the use of ratios 

• understand the scientific notation form of a number 
• manipulate logarithms 

• understand how to estimate errors in measurements and how to combine them. 

 

Algebraic expressions and formulae 

As a result of learning this material you should be able to 

• add and subtract algebraic expressions and simplify the result 

• multiply two algebraic expressions, removing brackets 
• evaluate algebraic expressions using the rules of precedence 

• change the subject of a formula 

• distinguish between an identity and an equation 

• obtain the solution of a linear equation 

• recognise the kinds of solution for two simultaneous equations 
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• understand the terms direct proportion, inverse proportion and joint proportion 

• solve simple problems involving proportion 

• factorise a quadratic expression 

• carry out the operations add, subtract, multiply and divide on algebraic fractions 

• interpret simple inequalities in terms of intervals on the real line 

• solve simple inequalities, both geometrically and algebraically 

• interpret inequalities which involve the absolute value of a quantity. 

 

Linear laws 

As a result of learning this material you should be able to 

• understand the Cartesian co-ordinate system 

• plot points on a graph using Cartesian co-ordinates 

• uŶdeƌstaŶd the teƌŵs ͚gƌadieŶt͛ aŶd ͚iŶteƌĐept͛ ǁith ƌefeƌeŶĐe to stƌaight liŶes 

• obtain and use the equation        

• obtain and use the equation of a line with known gradient through a given point 
• obtain and use the equation of a line through two given points 

• use the intercept form of the equation of a straight line 

• use the general equation           

• determine algebraically whether two points lie on the same side of a straight line 

• recognise when two lines are parallel 

• recognise when two lines are perpendicular 

• obtain the solution of two simultaneous equations in two unknowns using graphical and 

algebraic methods 

• interpret simultaneous linear inequalities in terms of regions in the plane 

• reduce a relationship to linear form. 

 

Quadratics, cubics, polynomials 

As a result of learning this material you should be able to 

• recognise the graphs of      and of       

• understand the effects of translation and scaling on the graph of      
• rewrite a quadratic expression by completing the square 

• use the rewritten form to sketch the graph of the general expression          

• determine the intercepts on the axes of the graph of             

• determine the highest or lowest point on the graph of            

• sketch the graph of a quadratic expression 
• state the criterion that determines the number of roots of a quadratic equation 

• solve the equation            via factorisation, by completing the square and by the 

formula 

• recognise the graphs of      and of       

• recognise the main features of the graph of                

• recognise the main features of the graphs of quartic polynomials 
• state and use the remainder theorem 

• derive the factor theorem 

• factorise simple polynomials as a product of linear and quadratic factors. 

 

Analysis and Calculus 

Functions and their inverses 

As a result of learning this material you should be able to 

• define a function, its domain and its range 

• use the notation       
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• determine the domain and range of simple functions 

• relate a pictorial representation of a function to its graph and to its algebraic definition 

• determine whether a function is injective, surjective, bijective 

• understand how a graphical translation can alter a functional description 

• understand how a reflection in either axis can alter a functional description 

• understand how a scaling transformation can alter a functional description 

• determine the domain and range of simple composite functions 

• use appropriate software to plot the graph of a function 

• obtain the inverse of a function by a pictorial representation, graphically or algebraically 
• determine the domain and range of the inverse of a function 

• determine any restrictions on      for the inverse to be a function 

• obtain the inverse of a composite function 

• recognise the properties of the function     

• understand the concept of the limit of a function. 

 

Sequences, series, binomial expansions 

As a result of learning this material you should be able to 

• define a sequence and a series and distinguish between them 

• recognise an arithmetic progression and its component parts 

• find the general term of an arithmetic progression 

• find the sum of an arithmetic series 

• recognise a geometric progression and its component parts 

• find the general term of a geometric progression 

• find the sum of a finite geometric series 

• iŶteƌpƌet the teƌŵ ͚suŵ͛ iŶ ƌelatioŶ to aŶ iŶfiŶite geoŵetƌiĐ seƌies 

• find the sum of an infinite geometric series when it exists 
• find the arithmetic mean of two numbers 

• find the geometric mean of two numbers 

• obtain the binomial expansions of                for s a rational number 

• use the binomial expansion to obtain approximations to simple rational functions. 

 

Logarithmic and exponential functions 

As a result of learning this material you should be able to 

• recognise the graphs of the power law function 

• define the exponential function and sketch its graph 

• define the logarithmic function as the inverse of the exponential function 

• use the laws of logarithms to simplify expressions 

• solve equations involving exponential and logarithmic functions 

• solve problems using growth and decay models. 

 

Rates of change and differentiation 

As a result of learning this material you should be able to 

• define average and instantaneous rates of change of a function 

• understand how the derivative of a function at a point is defined 

• recognise the derivative of a function as the instantaneous rate of change 

• interpret the derivative as the gradient at a point on a graph 

• distiŶguish ďetǁeeŶ ͚deƌiǀatiǀe͛ aŶd ͚deƌiǀed fuŶĐtioŶ͛ 
• use the notations 

                 etc. 

• use a table of the derived functions of simple functions 
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• recall the derived function of each of the standard functions 

• use the multiple, sum, product and quotient rules 

• use the chain rule 

• relate the derivative of a function to the gradient of a tangent to its graph 

• obtain the equation of the tangent and normal to the graph of a function. 

 

Stationary points, maximum and minimum values 

As a result of learning this material you should be able to 

• use the derived function to find where a function is increasing or decreasing 

• define a stationary point of a function 

• distinguish between a turning point and a stationary point 

• locate a turning point using the first derivative of a function 

• classify turning points using first derivatives 

• obtain the second derived function of simple functions 

• classify stationary points using second derivatives. 

 

Indefinite integration 

As a result of learning this material you should be able to 

• reverse the process of differentiation to obtain an indefinite integral for simple functions 

• understand the role of the arbitrary constant 

• use a table of indefinite integrals of simple functions 

• understand and use the notation for indefinite integrals 

• use the constant multiple rule and the sum rule 
• use indefinite integration to solve practical problems such as obtaining velocity from a 

formula for acceleration or displacement from a formula for velocity. 

 

Definite integration, applications to areas and volumes 

As a result of learning this material you should be able to 

• understand the idea of a definite integral as the limit of a sum 

• realise the importance of the Fundamental Theorem of the Calculus 
• obtain definite integrals of simple functions 

• use the main properties of definite integrals 

• calculate the area under a graph and recognise the meaning of a negative value 

• calculate the area between two curves 

• calculate the volume of a solid of revolution 

• use tƌapeziuŵ aŶd “iŵpsoŶ͛s ƌules to appƌoǆiŵate the ǀalue of a defiŶite iŶtegƌal. 
 

Complex numbers 

As a result of learning this material you should be able to 

• define a complex number and identify its component parts 

• represent a complex number on an Argand diagram 

• carry out the operations of addition and subtraction 

• write down the conjugate of a complex number and represent it graphically 

• identify the modulus and argument of a complex number 

• carry out the operations of multiplication and division in both Cartesian and polar form 

• solve equations of the form     , where a is a real number. 
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Proof 

As a result of learning this material you should be able to 

• understand how a theorem is deduced from a set of assumptions 

• appreciate how a corollary is developed from a theorem 

• folloǁ a pƌoof of PǇthagoƌas͛ theoƌeŵ 
• follow proofs of theorems for example, the concurrency of lines related to triangles and/or 

the equality of angles related to circles. 

 

Discrete Mathematics 

Sets 

As a result of learning this material you should be able to 

• understand the concepts of a set, a subset and the empty set 

• determine whether an item belongs to a given set or not 

• use and interpret Venn diagrams 

• find the union and intersection of two given sets 

• apply the laws of set algebra. 

 

Geometry and Trigonometry 

Geometry 

As a result of learning this material you should be able to 

• recognise the different types of angle 

• identify the equal angles produced by a transversal cutting parallel lines 

• identify the different types of triangle 

• state and use the formula for the sum of the interior angles of a polygon 

• calculate the area of a triangle 

• use the rules for identifying congruent triangles 

• know when two triangles are similar 

• state and use Pythagoras' theorem 

• understand radian measure 

• convert from degrees to radians and vice-versa 
• state and use the formulae for the circumference of a circle and the area of a disc 

• calculate the length of a circular arc 

• calculate the areas of a sector and of a segment of a circle 

• quote formulae for the area of simple plane figures 

• quote formulae for the volume of elementary solids: a cylinder, a pyramid, a tetrahedron, a 

cone and a sphere 

• quote formulae for the surface area of elementary solids: a cylinder, a cone and a sphere 

• sketch simple orthographic views of elementary solids 

• understand the basic concept of a geometric transformation in the plane 

• recognise examples of a metric transformation (isometry) and affine transformation 
(similitude) 

• obtain the image of a plane figure in a defined geometric transformation: a translation in a 

given direction, a rotation about a given centre, a symmetry with respect to the centre or to 

the axis, scaling to a centre by a given ratio. 

 

Trigonometry 

As a result of learning this material you should be able to 

• define the sine, cosine and tangent of an acute angle 
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• define the reciprocal ratios cosecant, secant and cotangent 

• state aŶd use the fuŶdaŵeŶtal ideŶtities aƌisiŶg fƌoŵ PǇthagoƌas͛ theoƌeŵ 

• relate the trigonometric ratios of an angle to those of its complement 

• relate the trigonometric ratios of an angle to those of its supplement 

• state in which quadrants each trigonometric ratio is positive (the CAST rule) 

• state and apply the sine rule 

• state and apply the cosine rule 

• calculate the area of a triangle from the lengths of two sides and the included angle 

• solve a triangle given sufficient information about its sides and angles 
• recognise when there is no triangle possible and when two triangles can be found. 

 

Co-ordinate geometry 

As a result of learning this material you should be able to 

• calculate the distance between two points 

• find the position of a point which divides a line segment in a given ratio 

• find the angle between two straight lines 
• calculate the distance of a given point from a given line 

• calculate the area of a triangle knowing the co-ordinates of its vertices 

• give simple examples of a locus 

• recognise and interpret the equation of a circle in standard form and state its radius and 

centre 

• convert the general equation of a circle to standard form 

• recognise the parametric equations of a circle 

• derive the main properties of a circle, including the equation of the tangent at a point 

• define a parabola as a locus 

• recognise and interpret the equation of a parabola in standard form and state its vertex, 
focus, axis, parameter and directrix 

• recognise the parametric equation of a parabola 

• derive the main properties of a parabola, including the equation of the tangent at a point 

• understand the concept of parametric representation of a curve 

• use polar co-ordinates and convert to and from Cartesian co-ordinates. 

 

Trigonometric functions and applications 

As a result of learning this material you should be able to 

• define the term periodic function 

• sketch the graphs of                and         and describe their main features 

• deduce the graphs of the reciprocal functions cosec, sec and cot 

• deduce the nature of the graphs of                               

• deduce the nature of the graphs of                          

• deduce the nature of the graphs of                   , etc. 

• solve the equations                             

• use the expression              to represent an oscillation and relate the 
parameters to the motion 

• rewrite the expression                      as a single cosine or sine formula. 

 

Trigonometric identities 

As a result of learning this material you should be able to 

• obtain and use the compound angle formulae and double angle formulae 

• obtain and use the product formulae 
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• solve simple problems using these identities. 

 

Statistics and Probability 

Data Handling 

As a result of learning this material you should be able to 

• interpret data presented in the form of line diagrams, bar charts, pie charts 

• interpret data presented in the form of stem and leaf diagrams, box plots, histograms 

• construct line diagrams, bar charts, pie charts, stem and leaf diagrams, box plots, histograms 

for suitable data sets 

• calculate the mode, median and mean for a set of data items. 

 

Probability 

As a result of learning this material you should be able to 

• defiŶe the teƌŵs ͚outĐoŵe͛, ͚eǀeŶt͛ aŶd ͚pƌoďaďilitǇ͛. 
• calculate the probability of an event by counting outcomes 

• calculate the probability of the complement of an event 

• calculate the probability of the union of two mutually-exclusive events 

• calculate the probability of the union of two events 

• calculate the probability of the intersection of two independent events. 

 

3.2 Core Level 1 

The material at this level builds on Core Zero and is regarded as basic to all engineering disciplines in 

that it provides the fundamental understanding of many mathematical principles. However, it is 

recognised that the emphasis given to certain topics within Core level 1 may differ according to the 

engineering discipline. So, for example, electrical and electronic engineers may cover some of the 

topics in Discrete Mathematics in greater depth than, say, Mechanical Engineers. 

The material in Core level 1 can be used by engineers in the understanding and the development of 

theory and in the sensible selection of tools for analysis of engineering problems. This material will 

be taught in the early stages of a university programme. Noting the comment made in Section 3.1, it 

is possible that some of this material will be taught alongside or immediately after coverage of 

missing topics from Core Zero. 

Analysis and Calculus 

The material in this section covers the basic development of analysis and calculus consequent on the 

material in Core Zero. 

Hyperbolic functions 

As a result of learning this material you should be able to 

• define and sketch the functions sinh, cosh, tanh 

• sketch the reciprocal functions cosech, sech and coth 

• state the domain and range of the inverse hyperbolic functions 

• recognise and use basic hyperbolic identities 

• apply the functions to a practical problem (for example, a suspended cable) 

• understand how the functions are used in simplifying certain standard integrals. 
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Rational functions 

As a result of learning this material you should be able to 

• sketch the graph of a rational function where the numerator is a linear expression and the 

denominator is either a linear expression or the product of two linear expressions 

• obtain the partial fractions of a rational function, including cases where the denominator has 
a repeated linear factor or an irreducible quadratic factor. 

 

Complex numbers 

As a result of learning this material you should be able to 

• state aŶd use Euleƌ͛s foƌŵula 

• state aŶd uŶdeƌstaŶd De Moiǀƌe͛s theoƌeŵ foƌ a ƌatioŶal iŶdeǆ 

• find the roots of a complex number 
• link trigonometric and hyperbolic functions 

• describe regions in the plane by restricting the modulus and / or the argument of a complex 

number. 

 

Functions 

As a result of learning this material you should be able to 

• define and recognise an odd function and an even function 
• uŶdeƌstaŶd the pƌopeƌties ͚ĐoŶĐaǀe͛ aŶd ͚ĐoŶǀeǆ͛ 
• identify, from its graph, where a function is concave and where it is convex 

• define and locate points of inflection on the graph of a function 

• evaluate a function of two or more variables at a given point 

• relate the main features, including stationary points, of a function of 2 variables to its 3D plot 

and to a contour map 

• obtain the first partial derivatives of simple functions of several variables 

• use appropriate software to produce 3D plots and/or contour maps. 

 

Differentiation 

As a result of learning this material you should be able to 

• understand the concepts of continuity and smoothness 

• differentiate inverse functions 

• differentiate functions defined implicitly 

• differentiate functions defined parametrically 

• locate any points of inflection of a function 
• find greatest and least values of physical quantities. 

 

Sequences and series  

As a result of learning this material you should be able to 

• understand convergence and divergence of a sequence 

• know what is meant by a partial sum 

• understand the concept of a power series 
• apply simple tests for convergence of a series 

• find the tangent and quadratic approximations to a function 

• understand the idea of radius of convergence of a power series 

• recognise Maclaurin series for standard functions 

• understand how Maclaurin series generalise to Taylor series 

• use Taylor series to obtain approximate percentage changes in a function. 
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Methods of integration 

As a result of learning this material you should be able to 

• obtain definite and indefinite integrals of rational functions in partial fraction form 

• apply the method of integration by parts to indefinite and definite integrals 

• use the method of substitution on indefinite and definite integrals 
• solve practical problems which require the evaluation of an integral 

• recognise simple examples of improper integrals 

• use the formula for the maximum error in a trapezoidal rule estimate 

• use the foƌŵula foƌ the ŵaǆiŵuŵ eƌƌoƌ iŶ a “iŵpsoŶ͛s ƌule estiŵate. 
 

Applications of integration 

As a result of learning this material you should be able to 

• find the length of part of a plane curve 

• find the curved surface area of a solid of revolution 

• obtain the mean value and root-mean-square (RMS) value of a function in a closed interval 

• find the first and second moments of a plane area about an axis 

• find the centroid of a plane area and of a solid of revolution. 

 

Solution of non-linear equations 

As a result of learning this material you should be able to 

• use intersecting graphs to help locate approximately the roots of non-linear equations 

• use DesĐaƌtes͛ ƌules of sigŶs foƌ polǇŶoŵial eƋuatioŶs 

• understand the distinction between point estimation and interval reduction methods 

• use a point estimation method and an interval reduction method to solve a practical problem 

• understand the various convergence criteria 

• use appropriate software to solve non-linear equations. 

 

Discrete Mathematics 

The material in this section covers the basic development of discrete mathematics consequent on 

the material in Core Zero. 

Mathematical logic 

As a result of learning this material you should be able to 

• recognise a proposition 

• negate a proposition 

• form a compound proposition using the connectives AND, OR, IMPLICATION 

• construct a truth table for a compound proposition 

• construct a truth table for an implication 

• verify the equivalence of two propositions using a truth table 

• identify a contradiction and a tautology 

• construct the converse of a proposition 

• obtain the contrapositive form of an implication 
• uŶdeƌstaŶd the uŶiǀeƌsal ƋuaŶtifieƌ ͚foƌ all͛ 
• uŶdeƌstaŶd the eǆisteŶtial ƋuaŶtifieƌ ͚theƌe eǆists͛ 
• negate propositions with quantifiers 

• follow simple examples of direct and indirect proof 

• follow a simple example of a proof by contradiction. 
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Sets 

As a result of learning this material you should be able to 

• understand the notion of an ordered pair 

• find the Cartesian product of two sets 

• define a characteristic function of a subset of a given universe 
• compare the algebra of switching circuits to that of set algebra and logical connectives 

• analyse simple logic circuits comprising AND, OR, NAND, NOR and EXCLUSIVE OR gates 

• understand the concept of a countable set. 

 

Mathematical induction and recursion 

As a result of learning this material you should be able to 

• understand (weak) mathematical induction 
• follow a simple proof which uses mathematical induction 

• define a set by induction 

• use structural induction to prove some simple properties of a set which is given by induction. 

• understand the concept of recursion 

• define the factorial of a positive integer by recursion (any other suitable example will serve 

just as well). 

 

Graphs 

As a result of learning this material you should be able to 

• recognise a graph (directed and/or undirected) in a real situation 

• understand the notions of a path and a cycle 

• understand the notion of a tree and a binary tree 

 

Geometry 

The material in this section covers the basic development of geometry consequent on the material in 

Core Zero. 

Conic sections 

As a result of learning this material you should be able to 

• recognise the equation of an ellipse in standard form and state its foci, semiaxes and 

directrices 

• recognise the parametric equations of an ellipse 

• derive the main properties of an ellipse, including the equation of the tangent at a point 

• recognise the equation of a hyperbola in standard form and find its foci, semiaxes and 

asymptotes 

• recognise the parametric equations of a hyperbola 

• derive the main properties of a hyperbola, including the equation of the tangent at a point 

• recognise the equation of a conic section in the general form and classify the type of conic 
section 

 

3D co-ordinate geometry 

As a result of learning this material you should be able to 

• recognise and use the standard equation of a straight line in 3D 
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• recognise and use the standard equation of a plane 

• find the angle between two straight lines 

• find where two straight lines intersect 

• find the angle between two planes 

• find the intersection line of two planes 

• find the intersection of a line and a plane 

• find the angle between a line and a plane 

• calculate the distance between two points, a point and a line, a point and a plane 

• calculate the distance between two lines, a line and a plane, two planes 
• recognise and use the standard equation of a singular quadratic surface (cylindrical, conical) 

• recognise and use the standard equation of a regular quadratic surface (ellipsoid, paraboloid, 

hyperboloid). 

 

Linear Algebra 

The material in this section covers the basic development of linear algebra consequent on the 

material in Core Zero. 

Vector arithmetic 

As a result of learning this material you should be able to 

• distinguish between vector and scalar quantities 

• understand and use vector notation 

• represent a vector pictorially 

• carry out addition and scalar multiplication and represent them pictorially 

• determine the unit vector in a specified direction 

• represent a vector in component form (two and three components only). 

 

Vector algebra and applications 

As a result of learning this material you should be able to 

• solve simple problems in geometry using vectors 

• solve simple problems using the component form (for example, in mechanics) 

• define the scalar product of two vectors and use it in simple applications 

• understand the geometric interpretation of the scalar product 

• define the vector product of two vectors and use it in simple applications 

• understand the geometric interpretation of the vector product 

• define the scalar triple product of three vectors and use it in simple applications 

• understand the geometric interpretation of the scalar triple product. 

 

Matrices and determinants 

As a result of learning this material you should be able to 

• understand what is meant by a matrix 

• recall the basic terms associated with matrices (for example, diagonal, trace, square, 

triangular, identity) 

• obtain the transpose of a matrix 

• determine any scalar multiple of a matrix 

• recognise when two matrices can be added and find, where possible, their sum 

• recognise when two matrices can be multiplied and find, where possible, their product 
• calculate the determinant of 2 x 2 and 3 x 3 matrices 
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• understand the geometric interpretation of 2 x 2 and 3 x 3 determinants 

• use the elementary properties of determinants in their evaluation 

• state the criterion for a square matrix to have an inverse 

• write down the inverse of a 2 x 2 matrix when it exists 

• determine the inverse of a matrix, when it exists, using row operations 

• calculate the rank of a matrix 

• use appropriate software to determine inverse matrices. 

 

Solution of simultaneous linear equations 

As a result of learning this material you should be able to 

• represent a system of linear equations in matrix form 

• understand how the general solution of an inhomogeneous linear system of m equations in n 

unknowns is obtained from the solution of the homogeneous system and a particular 

solution 

• recognise the different possibilities for the solution of a system of linear equations 

• give a geometrical interpretation of the solution of a system of linear equations 

• understand how and why the rank of the coefficient matrix and the augmented matrix of a 

linear system can be used to analyse its solution 

• use the inverse matrix to find the solution of 3 simultaneous linear equations when possible 
• uŶdeƌstaŶd the teƌŵ ͚ill-ĐoŶditioŶed͛ 
• apply the Gauss elimination method and recognise when it fails 

• understand the Gauss-Jordan variation 

• use appropriate software to solve simultaneous linear equations. 

 

Least squares curve fitting 

As a result of learning this material you should be able to 

• define the least squares criterion for fitting a straight line to a set of data points 

• understand how and why the criterion is satisfied by the solution of           

• understand the effect of outliers 
• modify the method to deal with polynomial models 

• use appropriate software to fit a straight line to a set of data points. 

 

Linear spaces and transformations 

As a result of learning this material you should be able to 

• define a linear space 

• define and recognise linear independence 

• define and obtain a basis for a linear space 

• define a subspace of a linear space and find a basis for it 

• define scalar product in a linear space 
• understand the concept of norm 

• define the Euclidean norm 

• define a linear transformation between two spaces; define the image space and the null 

space for the transformation 

• derive the matrix representation of a linear transformations 

• understand how to carry out a change of basis 

• define an orthogonal transformation 
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• apply the above matrices of linear transformations in the Euclidean plane and Euclidean 

space 

• recognise matrices of Euclidean and affine transformations: identity, translation, symmetry, 

rotation and scaling. 

 

Statistics and Probability 

The material in this section covers the basic development of statistics and probability consequent on 

the material in Core Zero. 

Data Handling 

As a result of learning this material you should be able to 

• calculate the range, inter-quartile range, variance and standard deviation for a set of data 

items 

• distinguish between a population and a sample 

• know the difference between the characteristic values (moments) of a population and of a 

sample 

• construct a suitable frequency distribution from a data set 
• calculate relative frequencies 

• calculate measures of average and dispersion for a grouped set of data 

• understand the effect of grouping on these measures. 

 

Combinatorics 

As a result of learning this material you should be able to 

• evaluate the number of ways of arranging unlike objects in a line 

• evaluate the number of ways of arranging objects in a line, where some are alike 

• evaluate the number of ways of arranging unlike objects in a ring 

• evaluate the number of ways of permuting r objects from n unlike objects 
• evaluate the number of combinations of r objects from n unlike objects 

• use the multiplication principle for combinations. 

 

Simple probability 

As a result of learning this material you should be able to 

• interpret probability as a degree of belief 

• understand the distinction between a priori and a posteriori probabilities 

• use a tree diagram to calculate probabilities 

• kŶoǁ ǁhat ĐoŶditioŶal pƌoďaďilitǇ is aŶd ďe aďle to use it ;BaǇes͛ theoƌeŵͿ 
• calculate probabilities for series and parallel connections. 

 

Probability models 

As a result of learning this material you should be able to 

• define a random variable and a discrete probability distribution 

• state the criteria for a binomial model and define its parameters 

• calculate probabilities for a binomial model 

• state the criteria for a Poisson model and define its parameters 

• calculate probabilities for a Poisson model 
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• state the expected value and variance for each of these models 

• understand when a random variable is continuous 

• explain the way in which probability calculations are carried out in the continuous case. 

 

Normal distribution 

As a result of learning this material you should be able to 

• handle probability statements involving continuous random variables 

• convert a problem involving a normal variable to the area under part of its density curve 

• relate the general normal distribution to the standardised normal distribution 

• use tables for the standardised normal variable 
• solve problems involving a normal variable using tables. 

 

Sampling 

As a result of learning this material you should be able to 

• define a random sample 

• know what a sampling distribution is 

• uŶdeƌstaŶd the teƌŵ ͚ŵeaŶ sƋuaƌed eƌƌoƌ͛ of aŶ estiŵate 

• uŶdeƌstaŶd the teƌŵ ͚uŶďiasedŶess͛ of aŶ estiŵate 

 

Statistical inference 

As a result of learning this material you should be able to 

• apply confidence intervals to sample estimates 

• follow the main steps in a test of hypothesis. 

• understand the difference between a test of hypothesis and a significance test (pvalue) 

• define the level of a test (error of the first kind) 

• define the power of a test (error of the second kind) 

• state the link between the distribution of a normal variable and that of means of samples 

• place confidence intervals around the sample estimate of a population mean 

• test claims about the population mean using results from sampling 

• recognise whether an alternative hypothesis leads to a one-tail or a two-tail test 
• compare the approaches of using confidence intervals and hypothesis tests. 

3.3 Level 2 

The material at this level builds on Core Level 1. The material is now advanced enough for simple real 

engineering problems to be addressed. The material in this level can no longer be regarded as 

essential for every engineer (hence the omission of 'Core' from the title of this level). Different 

disciplines will select different topics from the material outlined here. Furthermore, different 

disciplines may well select different amounts of material from Level 2. Those engineering disciplines 

which are more mathematically based, such as electrical and chemical engineering, will require their 

students to study more Level 2 topics than other disciplines, such as manufacturing and production 

engineering which are less mathematically-based. 

Analysis and Calculus 

The material in this section covers the basic development of analysis and calculus consequent on the 

material in Core Level 1. 
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Ordinary differential equations 

As a result of learning this material you should be able to 

• understand how rates of change can be modelled using first and second derivatives 

• recognise the kinds of boundary condition which apply in particular situations 

• distinguish between boundary and initial conditions 

• distinguish between general solution and particular solution 

• understand how existence and uniqueness relate to a solution 

• classify differential equations and recognise the nature of their general solution 

• understand how substitution methods can be used to simplify ordinary differential equations 
• use an appropriate software package to solve ordinary differential equations. 

 

First order ordinary differential equations 

As a result of learning this material you should be able to 

• recognise when an equation can be solved by separating its variables 

• obtain general solutions of equations by applying the method 

• obtain particular solutions by applying initial conditions 

• recognise the common equations of the main areas of application 

• interpret the solution and its constituent parts in terms of the physical problem 

• uŶdeƌstaŶd the teƌŵ ͚eǆaĐt eƋuatioŶ͛ 
• obtain the general solution to an exact equation 

• solve linear differential equations using integrating factors 

• find and interpret solutions to equations describing standard physical situations 

• use a simple numerical method for estimating points on the solution curve. 

 

Second order equations - complementary function and particular integral 

As a result of learning this material you should be able to 

• distinguish between free and forced oscillation 

• recognise linear second-order equations with constant coefficients and how they arise in the 
modelling of oscillation 

• obtain the types of complementary function and interpret them in terms of the model 

• find the particular integral for simple forcing functions 

• obtain the general solution to the equation 

• apply initial conditions to obtain a particular solution 

• identify the transient and steady-state response 

• apply boundary conditions to obtain a particular solution, where one exists 

• ƌeĐogŶise aŶd uŶdeƌstaŶd the ŵeaŶiŶg of ͚ďeats͛ 
• recognise and understand the meaning of resonance. 

 

Functions of several variables 

As a result of learning this material you should be able to 

• define a stationary point of a function of several variables 

• define local maximum, local minimum and saddle point for a function of two variables 

• locate the stationary points of a function of several variables 

• obtain higher partial derivatives of simple functions of two or more variables 

• understand the criteria for classifying a stationary point of a function of two variables 

• obtain total rates of change of functions of two variables 
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• approximate small errors in a function using partial derivatives. 

 

Fourier series 

As a result of learning this material you should be able to 

• understand the effects of superimposing sinusoidal waves of different frequencies 

• recognise that a Fourier series approximation can be derived by a least squares approach 

• understand the idea of orthogonal functions 

• use the formulae to find Fourier coefficients in simple cases 

• appreciate the effect of including more terms in the approximation 

• interpret the resulting series, particularly the constant term 
• comment on the usefulness of the series obtained. 

• state the simplifications involved in approximating odd or even functions 

• sketch odd and even periodic extensions to a function defined on a restricted interval 

• obtain Fourier series for these extensions 

• compare the two series for relative effectiveness 

• obtain a Fourier series for a function of general period. 

 

Double integrals 

As a result of learning this material you should be able to 

• interpret the components of a double integral 
• sketch the area over which a double integral is defined 

• evaluate a double integral by repeated integration 

• reverse the order of a double integral 

• convert a double integral to polar co-ordinates and evaluate it 

• find volumes using double integrals. 

 

Further multiple integrals 

As a result of learning this material you should be able to 

• express problems in terms of double integrals 

• interpret the components of a triple integral 
• sketch the region over which a triple integral is defined 

• evaluate a simple triple integral by repeated integration 

• formulate and evaluate a triple integral expressed in cylindrical polar co-ordinates 

• formulate and evaluate a triple integral expressed in spherical polar co-ordinates 

• use multiple integrals in the solution of engineering problems. 

 

Vector calculus 

As a result of learning this material you should be able to 

• obtain the gradient of a scalar point function 

• obtain the directional derivative of a scalar point function and its maximum rate of change at 
a point 

• understand the concept of a vector field 

• obtain the divergence of a vector field 

• obtain the curl of a vector field 

• apply simple properties of the operator   
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• know that the curl of the gradient of a scalar is the zero vector 

• know that the divergence of the curl of a vector is zero 

• define and use the Laplacian operator   . 

 

Line and surface integrals, integral theorems 

As a result of learning this material you should be able to 

• evaluate line integrals along simple paths 

• apply line integrals to calculate work done 
• applǇ GƌeeŶ͛s theoƌeŵ iŶ the plaŶe to siŵple eǆaŵples 

• evaluate surface integrals over simple surfaces 

• use the Jacobian to transform a problem into a new co-ordinate system 

• applǇ Gauss͛ diǀeƌgeŶĐe theoƌeŵ to siŵple pƌoďleŵs 

• applǇ “tokes͛ theoƌeŵ to siŵple examples. 

 

Linear optimisation 

As a result of learning this material you should be able to 

• recognise a linear programming problem in words and formulate it mathematically 

• represent the feasible region graphically 
• solve a maximisation problem graphically by superimposing lines of equal profit 

• carry out a simple sensitivity analysis 

• represent and solve graphically a minimisation problem 

• eǆplaiŶ the teƌŵ ͚ƌeduŶdaŶt ĐoŶstƌaiŶt͛ 
• understand the meaning and use of slack variables in reformulating a problem 

• understand the concept of duality and be able to formulate the dual to a given problem. 

 

The simplex method 

As a result of learning this material you should be able to 

• convert a linear programming problem into a simplex tableau 
• solve a maximisation problem by the simplex method 

• interpret the tableau at each stage of the journey round the simplex 

• recognise cases of failure 

• write down the dual to a linear programming problem 

• use the dual problem to solve a minimisation problem. 

 

Non-linear optimisation 

As a result of learning this material you should be able to 

• solve an unconstrained optimisation problem in two variables 

• use information in a physically-based problem to help obtain the solution 

• use the method of Lagrange multipliers to solve constrained optimisation problems 

• solve practical problems such as minimising surface area for a fixed enclosed volume or 
minimising enclosed volume for a fixed surface area. 

 

Laplace transforms 

As a result of learning this material you should be able to 
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• use tables to find the Laplace transforms of simple functions 

• use the property of linearity to find the Laplace transforms 

• use the first shift theorem to find the Laplace transforms 

• use the ͚ŵultiplǇ ďǇ t͛ theoƌeŵ to fiŶd the LaplaĐe tƌaŶsfoƌŵs 

• obtain the transforms of first and second derivatives 

• invert a transform using tables and partial fractions 

• solve initial-value problems using Laplace transforms 

• compare this method of solution with the method of complementary function / particular 

integral. 
• use the unit step function in the definition of functions 

• know the Laplace transform of the unit step function 

• use the second shift theorem to invert Laplace transforms 

• obtain the Laplace transform of a periodic function 

• know the Laplace transform of the unit impulse function 

• obtain the transfer function of a simple linear time-invariant system 

• obtain the impulse response of a simple system 

• apply initial-value and final-value theorems 

• obtain the frequency response of a simple system. 

 

z transforms 

As a result of learning this material you should be able to 

• recognise the need to sample continuous-time functions to obtain a discrete-time signal 

• obtain the z transforms of simple sequences 

• use the linearity and shift properties to obtain z transforms 

• kŶoǁ the ͚ŵultiplǇ ďǇ    ͛ aŶd ͚ŵultiplǇ ďǇ   ͛ theoƌeŵs 
• use the initial-value and final-value theorems 

• invert a transform using tables and partial fractions 

• solve initial-value problems using z transforms 

• compare this method of solution with the method using Laplace transforms. 

 

Complex functions 

As a result of learning this material you should be able to 

• define a complex function and an analytic function 

• determine the image path of a linear mapping 

• determine the image path under the inversion mapping 

• determine the image path under a bilinear mapping 

• determine the image path under the mapping      

• understand the concept of conformal mapping and know and apply some examples 

• verify that a given function satisfies the Cauchy-Riemann conditions 
• recognise when complex functions are multi-valued 

• define a harmonic function 

• find the conjugate to a given harmonic function. 

 

Complex series and contour integration 

As a result of learning this material you should be able to 

• obtain the Taylor series of simple complex functions 

• determine the radius of convergence of such series 
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• obtain the Laurent series of simple complex functions 

• recognise the need for different series in different parts of the complex plane 

• uŶdeƌstaŶd the teƌŵs ͚siŶgulaƌitǇ͛, ͚pole͛ 
• find the residue of a complex function at a pole 

• understand the concept of a contour integral 

• evaluate a contour integral along simple linear paths 

• use CauĐhǇ͛s theoƌeŵ aŶd CauĐhǇ͛s iŶtegƌal theoƌeŵ 

• state and use the residue theorem to evaluate definite real integrals 

 

Introduction to partial differential equations 

As a result of learning this material you should be able to 

• recognise the three main types of second-order linear partial differential equations 

• appreciate in outline how each of these types is derived 

• state suitable boundary conditions to accompany each type 

• understand the nature of the solution of each type of equation. 

 

Solving partial differential equations 

As a result of learning this material you should be able to 

• understand the main steps in the separation of variables method 

• applǇ the ŵethod to the solutioŶ of LaplaĐe͛s eƋuatioŶ 
• interpret the solution in terms of the physical problem. 

 

Discrete Mathematics 

The material in this section covers the basic development of discrete mathematics consequent on 

the material in Core Level 1. 

Number systems 

As a result of learning this material you should be able to 

• carry out arithmetic operations in the binary system 

• carry out arithmetic operations in the hexadecimal system 

• use EuĐlid͛s algoƌithŵ foƌ fiŶdiŶg the greatest common divisor 

 

Algebraic operations 

As a result of learning this material you should be able to 

• understand the notion of a group 

• establish the congruence of two numbers modulo n 

• understand and carry out arithmetic operations in   , especially in    
• carry out arithmetic operations on matrices over    

• understand the Hamming code as an application of the above (any other suitable code will 

serve just as well). 

 

Recursion and difference equations 

As a result of learning this material you should be able to 
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• define a sequence by a recursive formula 

• obtain the general solution of a linear first-order difference equation with constant 

coefficients 

• obtain the particular solution of a linear first-order difference equation with constant 

coefficients which satisfies suitable given conditions 

• obtain the general solution of a linear second-order difference equation with constant 

coefficients 

• obtain the particular solution of a linear second-order difference equation with constant 

coefficients which satisfies suitable given conditions 

 

Relations 

As a result of learning this material you should be able to 

• understand the notion of binary relation 

• find the composition of two binary relations 

• find the inverse of a binary relation 

• understand the notion of a ternary relation 

• understand the notion of an equivalence relation on a set 

• verify whether a given relation is an equivalence relation or not 

• understand the notion of a partition on a set 
• view an equivalence either as a relation or a partition 

• understand the notion of a partial order on a set 

• understand the difference between maximal and greatest element, and between minimal 

and smallest element. 

 

Graphs 

As a result of learning this material you should be able to 

• recognise an Euler trail in a graph and / or an Euler graph 

• recognise a Hamilton cycle (path) in a graph 

• find components of connectivity in a graph 
• find components of strong connectivity in a directed graph 

• find a minimal spanning tree of a given connected graph. 

 

Algorithms 

As a result of learning this material you should be able to 

• understand when an algorithm solves a problem 

• uŶdeƌstaŶd the ͚ďig O͛ ŶotatioŶ foƌ fuŶĐtioŶs 

• understand the worst case analysis of an algorithm 

• understand one of the sorting algorithms 

• understand the idea of depth-first search 
• understand the idea of breadth-first search 

• understand a multi-stage algorithm (for example, finding the shortest path, finding the 

minimal spanning tree or finding maximal flow) 

• understand the notion of a polynomial-time-solvable problem 

• understand the ŶotioŶ of aŶ NP pƌoďleŵ ;as a pƌoďleŵ foƌ ǁhiĐh it is ͚easǇ͛ to ǀeƌifǇ aŶ 
affirmative answer) 

• understand the notion of an NP-complete problem (as a hardest problem among NP 

problems). 
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Geometry 

The material in this section covers the basic development of geometry consequent on the material in 

Core Level 1. 

Helix 

As a result of learning this material you should be able to 

• recognise the parametric equation of a helix 

• derive the main properties of a helix, including the equation of the tangent at a point, slope 

and pitch. 

 

Geometric spaces and transformations 

As a result of learning this material you should be able to 

• define Euclidean space and state its general properties 

• understand the Cartesian co-ordinate system in the space 

• apply the Euler transformations of the co-ordinate system 

• understand the polar co-ordinate system in the plane 
• understand the cylindrical co-ordinate system in the space 

• understand the spherical co-ordinate system in the space 

• define Affine space and state its general properties 

• understand the general concept of a geometric transformation on a set of points 

• uŶdeƌstaŶd the teƌŵs ͚iŶǀaƌiaŶts͛ aŶd ͚iŶǀaƌiaŶt pƌopeƌties͛ 
• know and use the non-commutativity of the composition of transformations 

• understand the group representation of geometric transformations 

• classify specific groups of geometric transformations with respect to invariants 

• derive the matrix form of basic Euclidean transformations 

• derive the matrix form of an affine transformation 
• calculate coordinates of an image of a point in a geometric transformation 

• apply a geometric transformation to a plane figure. 

 

Linear Algebra 

The material in this section covers the basic development of linear algebra consequent on the 

material in Core Level 1. 

Matrix methods 

As a result of learning this material you should be able to 

• define a banded matrix 

• recognise the notation for a tri-diagonal matrix 

• use the Thomas algorithm for solving a system of equations with a tri-diagonal coefficient 

matrix 

• partition a matrix 

• carry out addition and multiplication of suitably-partitioned matrices 

• find the inverse of a matrix in partitioned form. 

 

Eigenvalue problems 

As a result of learning this material you should be able to 
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• interpret eigenvectors and eigenvalues of a matrix in terms of the transformation it 

represents 

• convert a transformation into a matrix eigenvalue problem 

• find the eigenvalues and eigenvectors of 2x2 and 3x3 matrices algebraically 

• determine the modal matrix for a given matrix 

• reduce a matrix to diagonal form 

• reduce a matrix to Jordan form 

• state the Cayley-Hamilton theorem and use it to find powers and the inverse of a matrix 

• understand a simple numerical method for finding the eigenvectors of a matrix 
• use appropriate software to compute the eigenvalues and eigenvectors of a matrix 

• apply eigenvalues and eigenvectors to the solution of systems of linear difference and 

differential equations 

• understand how a problem in oscillatory motion can lead to an eigenvalue problem 

• interpret the eigenvalues and eigenvectors in terms of the motion 

• define a quadratic form and determine its nature using eigenvalues. 

 

Statistics and Probability 

The material in this section covers the basic development of statistics and probability consequent on 

the material in Core Level 1. 

One-dimensional random variables 

As a result of learning this material you should be able to 

• compare empirical and theoretical distributions 

• apply the exponential distribution to simple problems 

• apply the normal distribution to simple problems 

• apply the Weibull distribution to simple problems 
• apply the gamma distribution to simple problems. 

 

Two-dimensional random variables 

As a result of learning this material you should be able to 

• understand the concept of a joint distribution 

• understand the teƌŵs ͚joiŶt deŶsitǇ fuŶĐtioŶ͛, ͚ŵaƌgiŶal distƌiďutioŶ fuŶĐtioŶs͛ 
• define independence of two random variables 

• solve problems involving linear combinations of random variables 

• determine the covariance of two random variables 

• determine the correlation of two random variables. 

 

Small sample statistics 

As a result of learning this material you should be able to 

• realise that the normal distribution is not reliable when used with small samples 

• use tables of the t-distribution 

• solve problems involving small-sample means using the t-distribution 

• use tables of the F-distribution 

• use pooling of variances where appropriate 

• use the method of pairing where appropriate. 
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Small sample statistics: chi-square tests 

As a result of learning this material you should be able to 

• use tables for chi-squared distributions 

• decide on the number of degrees of freedom appropriate to a particular problem 

• use the chi-square distribution in tests of independence (contingency tables) 

• use the chi-square distribution in tests of goodness of fit. 

 

Analysis of variance 

As a result of learning this material you should be able to 

• set up the information for a one-way analysis of variance 

• interpret the ANOVA table 

• solve a problem using one-way analysis of variance 

• set up the information for a two-way analysis of variance 

• interpret the ANOVA table 

• solve a problem using two-way analysis of variance. 

 

Simple linear regression 

As a result of learning this material you should be able to 

• derive the equation of the line of best fit to a set of data pairs 
• calculate the correlation coefficient 

• place confidence intervals around the estimates of slope and intercept 

• place confidence intervals around values estimated from the regression line 

• carry out an analysis of variance to test goodness of fit of the regression line 

• interpret the results of the tests in terms of the original data 

• describe the relationship between linear regression and least squares fitting. 

 

Multiple linear regression and design of experiments 

As a result of learning this material you should be able to 

• understand the ideas involved in a multiple regression analysis 
• appreciate the importance of experimental design 

• recognise simple statistical designs. 

 

3.4 Level 3 

This level is the one at which the mathematical techniques covered should be applied to a range of 

problems encountered in industry by practising engineers. These advanced methods build on the 

foundations laid by Levels 1 and 2 of the curriculum. It is quite possible that much of this material will 

be taught not within the context of dedicated mathematical units but as part of units on the 

engineering topics to which they directly apply. It is expected that significant use will be made of 

industry standard mathematical software tools. The specialised nature of these techniques and the 

importance of their application in an engineering setting makes detailed learning outcomes (as given 

for the other levels of the curriculum) less straightforward to define. For this reason only a list of 

general topic headings will be given. This material will be taught only towards the end of a degree 

programme. 
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Analysis and calculus 

 Numerical solution of ordinary differential equations 

 Fourier analysis 

 Solution of partial differential equations, including the use of Fourier series 

 Fourier transforms 

 Finite element method 

Discrete mathematics 

 Combinatorics 

 Graph theory 

 Algebraic structures 

 Lattices and Boolean algebra 

 Grammars and languages 

Geometry 

 Differential geometry 

 Geometric modelling of curves and surfaces 

 Geometric methods in solid modelling 

 Non-Euclidean geometry 

 Computer geometry 

 Fractal geometry 

 Geometric core of Computer Graphics 

Linear Algebra 

 Matrix decomposition 

 Further numerical methods 

Statistics and probability 

 Stochastic processes 

 Statistical quality control 

 Reliability 

 Experimental design 

 Queueing theory and discrete simulation 

 Filtering and control 

 Markov processes and renewal theory 

 Statistical inference 

 Multivariate analysis 
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4 Teaching and learning environments 
A subject-specific curriculum sets the educational goals for a part of the study course. The previous 

two chapters presented a framework for specifying a mathematics curriculum for an engineering 

study course based on the concept of mathematical competence. In order to implement such a 

curriculum, the whole teaching and learning environment has to be taken into account. In this 

chapter we intend to discuss some issues which are related to the provision of such an environment 

for a competence-based mathematics curriculum. Section 4.1 investigates the suitability of different 

teaching and learning arrangements like lectures, e-learning scenarios, tutorials or projects. Section 

4.2 on transition addresses the problem that many content-related learning outcomes listed in the 

core zero part of chapter 3 are missing on entrance to the study course such that support has to be 

provided. Section 4.3 deals with the use of mathematics technology which is ubiquitous in 

engineering and engineering education, mostly in the form of mathematics or application programs. 

Section 4.4 sheds light on various aspects of integrating the mathematics curriculum into an 

engineering study course and section 4.5 briefly addresses the attitude of students towards the value 

of mathematics for their field of study and the consequences for their learning behavior. 

4.1 Teaching and learning arrangements1 

In this section, traditional and more recent learning arrangements are investigated regarding their 

potential for competence acquisition. Learning and teaching arrangements appear to have changed 

little over the years.  The predominant form of delivery remains the lecture, albeit this is now often 

backed up with supporting materials on a Virtual Learning Environment and may be delivered using 

much more modern methods than chalk and blackboard. There are many challenges facing the 

teacher.  These include the challenge of teaching to a large cohort of students, often with widely 

varying levels of prior mathematical knowledge.  There are challenges in motivating and engaging 

engineering students in their study of mathematics, in particular in incorporating engineering 

applications into the mathematics presented.  There are also challenges in determining what 

ŵatheŵatiĐs is ƌeleǀaŶt iŶ todaǇ͛s fast-changing society and how the introduction of computer 

algebra packages and other software impacts upon this.  Moreover, as assessment often drives 

learning, there is the challenge of ensuring that assessment is relevant and assesses the required 

skills and competencies. 

The learning arrangements considered here include lectures, assignments, tutorials, projects, 

laboratories and technology enhanced learning (which includes, but is much broader than, e-

learning); these will be related to the eight competencies. The contributions that the different 

learning arrangements can make to competency acquisition are discussed.  

Lectures  

We start with the most traditional, and probably also the most widespread, form of mathematics 

teaching – the lecture. Even in problem-based learning settings as described below, lectures still play 

a certain role (Christensen 2008). Lectures can take many different forms.  Traditionally, giving a 

lecture meant a one-directional presentation of material, during which student activity is primarily 

restricted to taking notes, although occasionally a student may ask the lecturer a question.  Recently, 

ways of increasing the level of student involvement in lectures have been explored (active learning 

components). These ŵethods iŶĐlude the use of ͚paiƌed disĐussioŶ͛ aŶd the use of ͚ĐliĐkeƌs͛, oƌ 

                                                           
1
 Most of the following is essentially a reproduction of Alpers & Demlova 2012. 
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personal response systems (Robinson 2010).  It should be noted that the size of the lecture plays an 

important role – in smaller lectures (up to 50 students) it is considerably easier to promote an active 

role of students than in larger ones (in excess of 100 students). 

The main reason for lectures is to introduce a larger audience to certain mathematical concepts and 

procedures. The goal is to give students a ͚fiƌst faŵiliaƌitǇ͛ with the material; subsequent individual or 

group activities, carried out by the learners, are usually necessary to increase understanding of the 

material, to recognise when it should be used and to be able to apply the concepts and procedures in 

both mathematical and applications contexts. A good lecture should motivate the material, relate it 

to previous ĐoŶĐepts aŶd pƌoǀide the ͞oǀeƌall piĐtuƌe͟ ;“loŵsoŶ ϮϬϭϬͿ.  

In what follows, we outline how lectures can contribute to the acquisition of the eight mathematical 

competencies.  We restrict ourselves to traditional introductory mathematics lectures for engineers. 

More advanced mathematical lectures (for example courses in discrete mathematics or 

mathematical logic) may contribute in a slightly different way to acquiring competencies. There 

might also be specific lectures on mathematical modelling or problem solving which are dedicated to 

addressing specific competencies but – given the usual curricular restrictions – most lectures cover 

the principal concepts and procedures in analysis and linear algebra.  

Mathematical thinking: In order to enhance the mathematical thinking competency, lecturers should 

emphasise in their lectures what mathematics is able to contribute to engineering work. For 

example, by arguing logically it is possible to show that a certain geometrical construction in a 

technical drawing is fixed by certain data, or that an ODE modelling a damped mass-spring system 

can only behave in a small number of ways. Moreover, in some circumstances, using a mathematical 

model can enable the determination of reasonable or even optimal configurations in advance, 

thereby avoiding the need for costly experimentation.  

Mathematical reasoning: In a lecture, the lecturer demonstrates correct mathematical reasoning 

when proving results, justifying certain assumptions or selecting a method of solving a problem. If 

the theory is laid out as a finished piece of mathematics, students do not see the process of creation 

and thinking behind the theory (as is also often the case with mathematical articles). Therefore, the 

lecturer should explain the reasoning behind setting up definitions and theorems and should not just 

present the formal definitions and arguments but should provide a considerable amount of 

explanatory material.  

Mathematical problem solving: Again, in a lecture the students do not see the real problem-solving 

process but merely the ͚polished͛ final version (which often gives the wrong impression, that 

everything in mathematics is straightforward once you have learned the correct procedure). 

Therefore, a lecture is quite restricted here. Nevertheless, the lecturer should explicitly outline the 

problem-solving strategies that are applied, for example analogǇ ;do it as iŶ the Đase of … Ϳ; 
transforming into a familiar domain; ͚divide and conquer͛ (split up into special cases); try to make use 

of information/properties you have (relate them to things you want to know or understand).  

Mathematical modelling: As stated above regarding problem solving, the modelling process can only 

be shown in simple examples (not the real going back and forth in the modelling cycle). One can 

explain and emphasise which kind of situation or behaviour can be modelled with a certain 

mathematical concept (e.g. vibration with sine functions, certain kinds of growth and decay with 

exponential functions, static behaviour with equations, etc.). When the students carry out their own 
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modelling activities in other learning arrangements, they then have at least ͚material͛ with which to 

experiment. As Niss (2010) stated, if one wants to set up a model one has to anticipate what might 

work, and the lecture might help in the process of anticipation (real experience with many modelling 

activities will be of greater help, though).  

Representing mathematical entities: In lectures the value of different representations can be, and 

should be, demonstrated (and therefore the necessity to switch between representations). There are 

many places in undergraduate mathematics where this can be done (different representations of 

lines: parameter form and equation form; graphical and algebraic representations of equations and 

inequalities; representations of functions; time domain and frequency domain). Therefore, the 

͚theme͛ of different representations can be explicitly emphasised at several places in a lecture, 

enlarging the probability that students see and retain the value for later use.  

Handling mathematical symbols and formalism: The lecture provides examples of the correct use of 

symbols and formalism in mathematics. This need not be as formal as in lectures for mathematics 

students (which would be too formal for most engineering students); but a semi-formal presentation 

should also serve as an example for students of computation and logical argument. For example, the 

use of set notation or short notations such as  for a sum at several places in the lecture should help 

students to familiarise themselves with this formal notation and language.  

Communicating in, with and about mathematics: In a classical lecture, the receptive side of this 

competency is emphasised. Students are required to listen and follow the oral (in the lecture theatre) 

and written (in accompanying scripts) argument of the lecturer. Here again, the lecturer should 

provide good examples of mathematical presentation appropriate to the audience (for example 

explain your reasoning, make the structure of your argument clear, try to make connections to the 

previous experience of the audience, emphasise important topics and de-emphasise technicalities). 

The students should try to relate the new concepts and procedures to their previous knowledge base 

and gain a preliminary understanding that should be enhanced in their own active studies later.  

Making use of aids and tools: The lecturer can provide demonstrations of the reasonable use of tools 

and other aids (e.g. visualisation of complex concepts; animation of processes; choice of adequate 

representation; quick computation of larger examples). These examples can then be used by 

students later when working on assignments or projects.  

There have been several attempts to make the classroom scenario more interactive, even in larger 

classrooms (Mason 2002; Gavalcova 2008; Robinson 2010). In smaller groups (20 to 50) it is possible 

to Đƌeate a ͞guided, diƌeĐted dialogue͟ ;GaǀalĐova 2008) by asking questions and letting students 

give and explain answers. Students can also give answers by using electronic voting systems (EVS, see 

Robinson 2010), which provide the lecturer with an overall picture of the current understanding of 

the audience. One can also include student activities by giving them small problems to discuss with 

each other in pairs or to make individual computations using their own technology. These active 

learning methods can enhance the acquisition of additional aspects of competencies compared to 

the classical unidirectional situation. If students are given questions that go beyond mere facts and 

require some sort of mathematical reasoning, the acquisition of the respective competency is being 

developed. If students are to exchange their arguments in pairs, the active side of the 

communication competency is also addressed. There are many conceptual questions (for a bank of 

such questions for use with EVS see Robinson 2010), for example regarding different forms of 

representations and their relationships, which can be given to students to discuss in lectures. 
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Moreover, when questions require the use of technology (normally pocket calculators) then the 

respective competency is also included in an active way. In summary, there are several ways of 

involving students actively even within a lecture scenario which help them acquire the ͚active͛ side of 

mathematical competencies.  

Assignments  

By assignments we mean all kinds of ͚smaller͛ tasks that students have to undertake on their own, be 

it in groups or individually. These include standard computational tasks that serve to develop more 

familiarity with notation, formalism and procedures but also more open and investigative 

assignments, with or without technology. Larger problems or projects are not included here but are 

dealt with separately below.  

Mathematical thinking: Mathematical thinking could be fostered in more open application tasks 

where students have to work with application models and solve questions that are of practical 

interest. This would demonstrate to students that having a mathematical model is helpful when 

working on practical tasks like machine dimensioning or choosing adequate parameters in control 

devices. On the other hand, a complete restriction to standard procedural computation tasks could 

lead the students to think that mathematics has nothing to do with real engineering work and hence 

is just an obstacle to be overcome during the early semesters.  

Mathematical reasoning: In standard tasks very restricted forms of procedural reasoning can be 

exercised but in more open assignments the development of chains of logical arguments can be 

developed (for example show that a certain geometric configuration is uniquely determined by 

certain data; or even more open: by which data is the configuration uniquely determined). Advanced 

mathematical courses provide even more material for exercising mathematical reasoning, for 

example courses on discrete mathematics or mathematical logic.  

Mathematical problem solving: Standard problems (for example how to integrate a function using 

one of the standard methods) can be learned using standard tasks (for example integrate a rational 

fuŶĐtioŶ usiŶg the paƌtial fƌaĐtioŶ ŵethodͿ. Moƌe opeŶ assigŶŵeŶts ;like ͚ĐoŶstƌuĐt a fuŶĐtioŶ to 
ŵoǀe fƌoŵ A to B giǀeŶ ĐeƌtaiŶ ƌestƌiĐtioŶs͛Ϳ ĐaŶ seƌǀe to ƌefleĐt oŶ the pƌiŶĐipal pƌoĐeduƌe to taĐkle 
such a problem. It is a question, though, whether many students are able to work on such a problem 

without tutorial support. So, the problems in such a learning arrangement are still likely to be rather 

͚well-formulated͛.  

Mathematical modelling: In standard tasks, only that part of mathematical modelling is practised 

where mathematically-formulated problems are solved using given mathematical models. In more 

open assignments there will still be a well-defined application situation but the ͚translation task͛ (as 

in word problems) to be performed might be more challenging.  

Representing mathematical entities: In standard tasks, one can train students to switch between 

different representations (the computational part). In more open assignments, one can also train 

them to choose an adequate representation for a particular problem.  

Handling mathematical symbols and formalism: Standard tasks are necessary and important to 

enabler students to become familiar with fundamental concepts and procedures. A certain fluency in 

dealing with symbols and formalism needs more or less permanent training (like fitness in sports), 

depending on individual abilities.  
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Communicating in, with and about mathematics: If students have to hand in written assignments, 

they have to state clearly their arguments and in this way learn to actively communicate 

mathematically. If students work on assignments in groups, the oral component of this competency 

is also taken into account.  

Making use of aids and tools: If the assignments include the use of aids like formulae books, pocket 

calculators or even mathematical programs, then the competency of making adequate use of aids 

and tools is also addressed.  

Tutorials  

By tutorials we mean learning arrangements where a tutor (teaching assistant or, possibly, a student) 

works with students in order to improve their understanding related to a lecture. Such tutorials can 

differ significantly with regard to the method of teaching and learning. There are tutorials where the 

tutor mainly performs example computations leading to a situation that is not much different from 

the lecture. But there are also forms of tutorial with active involvement of students who work on 

standard tasks or on more open assignments with the help of tutors. Students might also give 

presentations of their solutions on the blackboard.  

Since, in tutorials, similar tasks are dealt with as in assignments, the statements made in the previous 

section on assignments also hold for tutorials. In addition to this, tutorials provide the opportunity to 

have group discussions and presentations by students such that the communication competency can 

be better addressed. Moreover, because tutorial support is available, tasks can be more open since 

students can ask the tutor for help.  

Projects  

By projects we mean learning arrangements where students work – mostly in groups – on problems 

which are larger, more open and investigative in nature (for guidelines, see Alpers 2002). Usually, 

students have to document and present their work at the end. In problem-based learning settings 

(Niss 2001; Christensen 2008) this is the predominant way of learning although even there mixed 

forms including lectures can be found.  

Mathematical thinking, reasoning, problem solving and modelling: In projects, particularly in 

application projects, students can extend their understanding of what mathematics can do for them 

as prospective engineers. Students have to think about how to proceed, which steps to take in 

tackling the given problem and to check how far they got in the process, and what still needs to be 

done. This planning, monitoring and control work is of a general nature but when it comes to the 

mathematical kernel of a project it also addresses the mathematical problem-solving competency. 

Larger projects allow students to experience the full modelling cycle. Students set up and work with 

mathematical models reflecting an application situation which allows them to make variations and to 

experiment in order to get a better understanding of the situation and/or to achieve certain 

properties. This reflects real engineering work with programs implementing a mathematical model. 

Critical mathematical thinking (What are the restrictions of what mathematics can do for you?) can 

also be fostered when students think about the assumptions in models and parameters of models. 

When students do not simply experiment randomly but rather reason mathematically about the 

influence of parameters and dependency on assumptions, the respective competency is also 
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developed. Note that whether this potential can actually be put into reality depends strongly on the 

quality of the project tasks and the tutorial support.  

Communication in, with, and about mathematics: When students have to read mathematical texts on 

their own (including short web pages on mathematical concepts) and when they have to understand 

the mathematical explanations of a project group member, the passive side of the communication 

competency is addressed. When they explain themselves, write project documentation and make an 

oral presentation to other students, the active side is also taken into account. Moreover, in 

documentation and presentation, questions of adequate representation very often arise in the need 

to get a clear message across to the audience.  

Making use of aids and tools: More realistic problems usually require the use of mathematical 

software, so students also improve their competency of using tools properly. When they create their 

own experimentation environment for an application situation and try to use it in a goal-directed 

way (by making informed changes and interpreting the effect), they become accustomed to the way 

engineers use mathematically-based software programs in their work.  

Mathematics laboratories  

By mathematics laboratories, we mean learning scenarios where students work in a PC laboratory on 

tasks requiring the use of mathematical software such as numerical programs (Matlab®), CAS 

(Maple®, Mathematica®) or spreadsheets (Excel®). In such laboratory sessions, students practise the 

usage of the programs and see how they can be used for standard tasks. They might also be used for 

experimenting with more open tasks of an investigative nature.  

The same competency potential that is outlined in the earlier section on assignments can also be 

claimed for laboratories. In addition, the tool usage competency is specifically addressed. Moreover, 

since mathematical programs require mathematical notation and formalism as input, the respective 

competency is also developed. Regarding the representation competency, work with mathematical 

programs in laboratories also has high potential since students can switch flexibly between different 

representations. This must be embedded in adequate tasks to be meaningful and not just ͚playing 

around͛.  

Technology enhanced learning 

There are many ways in which technology can be used to enhance the learning process.  These are 

given different names, including e-learning, blended learning, on-line learning, etc., which often 

suggest that the learning activity may be carried out remotely from the presence of a member of 

academic staff.  However, whilst a substantial amount of such materials is available, to restrict 

thinking about enhancing learning only to material for distance learning is an overly narrow view of 

using technology to enhance learning.  As noted in the preceding section, technology can be used to 

enhance face-to-face learning experiences. 

For remote learning, presentation material, potentially using multimedia, can be made available for 

students to use to re-visit certain content in order to gain better understanding. This material can be 

prepared by, for example, using lecture capture technology, or Tablet computers. Animated worked 

examples can be particularly effective as they allow students to see solutions being developed in 

real-time (and the audio of the animations allows for explanation of the more difficult steps).  Such 

worked solutions could be prepared using technology such as Livescribe pens (see 
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http://www.livescribe.com/uk/) or screen capture from a Tablet PC using software such as Camtasia 

(see http://www.camtasiasoftware.com).  

There is also a wealth of supporting material on the web, such as mathcentre 

(www.mathcentre.ac.uk) and Khan Academy (www.khanacademy.org) which provide explanatory 

text, videos and self-assessment that is not directly related to a specific course but which is topic-

based. Computer-assisted assessment, for example, as implemented in testing systems like STACK 

(www.stack.bham.ac.uk) or Maple TA® (www.maplesoft.com/products/mapleta), can be used to 

allow lecturers and students to check procedural accuracy and, in some cases, understanding. 

Technology can also enable more interactive learning scenarios: For example, applets or other small 

learning objects can be produced which allow students to make changes (e.g. parameter variations) 

and determine their effect, or to work on tasks to achieve certain properties by making variations. 

There are also more sophisticated intelligent tutoring systems which allow the insertion of single 

steps and provide tutorial help. An electronic forum might also be used as a means of collaboration 

and communication between students, or between students and tutors/lecturers. More recently 

there has been the advent of massive open online courses (MOOCs) as part of the open educational 

resource movement.  Some universities in the US and elsewhere have partnered with companies, 

such as Coursera, to make some of their courses freely available online to a large audience.   

Technology-enhanced learning offers competence acquisition opportunities similar to the other 

learning arrangements discussed above. The passive side of the communication competency is 

addressed when students have to read and understand mathematical material presented 

electronically. The active side is particularly taken into account when students work in on-line 

discussion groups (forum) and explain mathematical material to each other. Using electronic aids and 

tools can also be trained in an e-learning environment. Working on larger problems or projects needs 

human interaction and tutoring which could in theory also be provided via electronic communication 

channels but personal dialogue is still stronger here.  

In summary, one can state that the classical ͚lecture theatre͛ arrangement still has its potential, in 

particular when it is enhanced by components of active learning, but it is certainly not sufficient. It 

can be considered as an example of ͚cognitive apprenticeship͛ where students see mathematical 

competence in action as performed by the lecturer; but students still have to work on mathematical 

tasks and problems themselves to become really competent. A blended approach, containing a 

mixture of several learning arrangements seems to be appropriate, where the particular offering 

certainly depends on circumstances like group size and available resources. Moreover, mathematical 

competencies are also acquired in application subjects, such as engineering mechanics, where the 

setting up of and working with mathematical models play an important role (cf. section 4.4). 

4.2 Transition issues 

The move from secondary education to university can be a challenging time for many students.  It is 

well-kŶoǁŶ that the ͚dƌop-out͛ ƌate is highest duƌiŶg the fiƌst feǁ ǁeeks of the first term.  This is an 

issue that faces all subjects and is one that exercises academics from across Europe and indeed the 

world.  In Europe a network of interested academics has been created, the European First Year 

Experience Network (http://www.efye.eu).  Since 2006, the Network has organised an annual 

conference, details of which can be found on their website.  In the USA, work on the first-year 

experience is even more firmly established.  The National Resource Center for the First Year 

Experience and Students in Transition is hosted by the University of South Carolina 

http://www.livescribe.com/uk/
http://www.mathcentre.ac.uk/
http://www.khanacademy.org/
http://www.stack.bham.ac.uk/
http://www.maplesoft.com/products/mapleta
http://www.efye.eu/
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(http://www.sc.edu/fye/) and in 2013 the 32nd annual First Year Experience conference was held, 

following the 19th annual Students in Transition conference which took place in October 2012. 

Engineering students face the same transition issues as students of other disciplines but, in addition, 

they face some subject specific issues.  Most notable amongst these is the issue of mathematics.  The 

study of mathematics is essential for all aspiring engineers.  However, for many undergraduates this 

is viewed as a chore, as a necessary evil to be endured.  Engineering undergraduates have chosen to 

go to university to study engineering not mathematics and it is often the practical, problem-solving 

elements of engineering that inspire them.  Many undergraduates find the mathematics that they 

study too abstract and theoretical to be enthused by the subject.  A pedagogy different from that 

used with mathematics undergraduates is needed to motivate and inspire engineering 

undergraduates.  It is for this reason that recent seminars of the SEFI Mathematics Working Group 

haǀe foĐused oŶ ͚aĐtiǀe leaƌŶiŶg͛.  Papeƌs ǁhiĐh haǀe addƌessed this theme include Gavalcova 

;ϮϬϬϴͿ, HealǇ, Maƌjoƌaŵ, O͛“ulliǀaŶ, ‘eillǇ aŶd ‘oďiŶsoŶ ;ϮϬϭϬͿ, JaŶilioŶis aŶd ValaŶtiŶas ;ϮϬϬϴͿ aŶd 
Robinson (2010).   

There is another crucial issue concerning mathematics and incoming engineering undergraduates – 

and that is the issue of basic mathematical competence.  For many years now there has been 

considerable discussion in the United Kingdom about the so-called Mathematics Problem – this is the 

gap between the level of mathematical competency that higher education wishes incoming 

undergraduate engineers to possess and the level that they actually do possess.  A seminal report, 

published in 2000 by the Engineering Council, Measuring the Mathematics Problem (Hawkes and 

Savage 2000), showed how the level of basic mathematical skills amongst students entering 

university with the same level of secondary qualification in mathematics had declined drastically 

during the 1990s. 

Although a great deal of attention, including a major Government inquiry into post-14 mathematics 

education (the Smith Inquiry which produced the report Making Mathematics Count (Smith 2004)), 

has ďeeŶ deǀoted to the ͚ŵatheŵatiĐs pƌoďleŵ͛ it is Đleaƌ that the pƌoďleŵ ƌeŵaiŶs uŶsolǀed.  IŶ 
2007, a report prepared for the House of Commons (National Audit Office 2007) stated that   

Many students require some additional academic support, especially in the mathematical skills 

required in science, mathematics, engineering and technology. (op.cit. paragraph 3.16, page 32). 

The persistent nature of the mathematics problem was highlighted in a report by the House of Lords 

(the upper legislative chamber) Select Committee on Science and Technology (House of Lords 2012):  

In 2006, the Royal Society argued that the gap between the mathematical skills of students when 

they entered HE and the mathematical skills needed for STEM [Science, Technology, Engineering and 

Mathematics] fiƌst degƌees ǁas a pƌoďleŵ ǁhiĐh had ďeĐoŵe aĐute … The evidence we received 

suggested that the problem remains. (op. cit. paragraph 25, page 15). 

Whilst the UŶited KiŶgdoŵ has paid the ŵost atteŶtioŶ to the ͚ŵatheŵatiĐs pƌoďleŵ͛, these issues 
are affecting a range of countries throughout Europe and the world.  In recent years, several papers 

highlighting the mathematical under-preparedness of incoming engineering undergraduates have 

been presented at SEFI Mathematics Working Group seminars.  These papers cover a range of 

nations including Germany (Cramm 2012, Kurz 2010, Schwenk and Kalus 2012), Hungary (Csakany 

2012), Ireland (Carr, Murphy, Bowe and Ni Fhloinn 2012), Spain (Nieto 2012).  In a discussion at the 

http://www.sc.edu/fye/


 

 

 
55 

14th SEFI Mathematics Working Group Seminar entitled What are the major problems facing 

engineering maths education in Europe, the delegates ĐoŶĐluded that ͞the lack of basic skills of 

university freshmen is well-known and seems to be Europe-ǁide͟(Alpers 2008).  

Whilst the vast majority of universities would undoubtedly prefer incoming engineering 

undergraduates to have greater mathematical skills than they do, such universities must accept the 

realities of the students they enrol.  As a House of Commons report (Public Accounts Committee 

2008) pointed out 

Theƌe is ŵuĐh that uŶiǀeƌsities ĐaŶ do to iŵpƌoǀe ƌeteŶtioŶ … TheǇ ĐaŶ pƌoǀide additioŶal aĐadeŵiĐ 
support for students, for example those struggling with the mathematical elements of their course. 

(op. cit. page 3). 

One mechanism to provide this additional academic support that has been commonly adopted at 

universities throughout the United Kingdom has been the establishment of mathematics support 

centres.  Mathematics support is the provision of extra-curricular assistance for students of any 

discipline (most frequently engineering and the physical sciences) who are encountering difficulties 

with the mathematical elements of their courses.  The most common model of mathematics support 

is that of the ͚dƌop-in centre.   In this approach, students can drop in, that is, attend without 

appointment at a time suitable to them (within the designated opening hours) and ask for assistance 

with any areas of mathematics which are causing them difficulties.   

A key element of the provision of successful mathematics support is the friendly, welcoming, 

supportive atmosphere of the drop-in centre.  For many students, the most significant problem with 

regard to their mathematical attainment within their course is not their current level of competence 

but their confidence.  Many students arrive in higher education having had bad experiences in their 

ŵatheŵatiĐal eduĐatioŶ to date aŶd theǇ ďelieǀe that theǇ ͞ĐaŶŶot do ŵatheŵatiĐs͟.  If this laĐk of 
confidence goes unaddressed, for many students it will result in them performing poorly in the 

mathematical elements of their university course.  Mathematics Support Centres can be an effective 

way of improving student confidence.  However, in order to ensure that as many students as possible 

engage with the services offered it is necessary to provide a safe, non-threatening, non-judgemental 

environment in which these students can address their lack of confidence and gaps in their 

background knowledge. 

The guide Setting Up a Maths Support Centre (Lawson 2012) presents a series of five case studies of 

mathematics support centres at different universities across England.   Although the drop-in centre 

model is the most prevalent, other models of mathematics support are used and descriptions of 

some of these can be found in Responding to the Mathematics Problem: The Implementation of 

Institutional Support Mechanisms (Marr and Grove, 2010).  The report How to set up a mathematics 

and statistics support provision (Mac an Bhaird and Lawson, 2012) provides step-by-step information 

for colleagues wishing to establish mathematics support in their own institution. 

The most valuable resource provided in mathematics support centres is the staff who work with 

students on a one-to-one basis or in small groups.  However, most centres also provide a range of 

resources which students can use for self-study and for support at times when the centre is not 

open.  The mathcentre web-site (www.mathcentre.ac.uk) contains several hundred resources of 

different types (including short help leaflets, longer self-study guides, video tutorials and interactive 

http://www.mathcentre.ac.uk/
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exercises) which are now used by students from universities around the world.  These quality assured 

resources (all in English) are freely available for students and staff to download and use.  

Two of the leading mathematics support centres are located at Coventry University and 

Loughborough University and these two institutions have collaborated to establish sigma, a Centre 

for Excellence in University wide mathematics and statistics support.  In 2005, sigma was designated 

by the Higher Education Funding Council for England as a Centre for Excellence in Teaching and 

Learning (CETL) (http://www.hefce.ac.uk/whatwedo/lt/enh/cetl/).  Having been acknowledged as 

one of the most successful CETLs, sigma was commissioned by the National HE STEM Programme 

(www.hestem.ac.uk) to promote mathematics support, to assist in the establishment of new 

mathematics support centres and to set up a network of mathematics support providers throughout 

England and Wales.  It has done this with great success, helping to establish 22 new mathematics 

support centres, developing six sigma regional hubs and creating the sigma-network, a free 

association of those involved in the provision of mathematics and statistics support throughout 

England and Wales (www.sigma-network.ac.uk).   Since 2006, sigma has organised an annual 

conference (CETL-MSOR).  The proceedings of these conferences contain many useful papers relating 

to mathematics support.  These proceedings are available at 

http://www.mathstore.ac.uk/?q=node/2049.     

A recent survey (Perkin et al, 2012) showed that around 85% of universities in the UK have some 

form of mathematics support provision.  However, mathematics support is not confined to the 

United Kingdom.  Such provision is now widespread in Australia (MacGillivray, 2008) and Ireland (Gill, 

O͛DoŶoghue aŶd JohŶsoŶ, ϮϬϬϴͿ, ǁheƌe theƌe is a ŶatioŶal Ŷetǁoƌk of suppoƌt pƌoǀideƌs ;the Iƌish 
Mathematics Learning Support Network http://supportcentre.maths.nuim.ie/mathsnetwork/).  In 

addition, in recent years, mathematics support centres have been opened in Germany, Switzerland 

and Sweden.  

In addition to the need to adopt a pedagogy that motivates engineering students to study 

mathematics and which accommodates incoming undergraduates whose mathematical skills are not 

at the desired level, academic staff must also deal with an increasing inhomogeneity amongst the 

students that they teach.  There are several causes of this inhomogeneity.  As noted previously, the 

mathematical skills of many new undergraduates are not the same as their contemporaries in 

previous year – however the skills of the best students remain at a very high level.  In addition, in 

many European countries there has been an increase in the number of students entering higher 

education.  At the very least, this means that a larger proportion of the age cohort enters higher 

education which inevitably increases the spread of student ability (if only the top 5% of the cohort 

enters higher education then the spread of ability will be quite limited but if the top 40% go to 

university then inevitably there is a much broader spread).  In addition to the increased spread of 

ability there is often also an increase in the diversity of pre-university mathematics education.  In 

other words, students entering the same university engineering course have studied different 

mathematics qualifications prior to entering university (Carr et al, 2012).  A variety of approaches 

have been adopted to deal with the greater diversity of mathematical preparation and ability 

amongst the engineering cohort.  Mathematics support centres, as outlined above, can play a useful 

role.  Other initiatives introduced to address the issue include diagnostic testing (MathsTEAM, 2003), 

bridging courses (Bamforth et al, 2007) and streaming (Steele, 2000). 

http://www.hefce.ac.uk/whatwedo/lt/enh/cetl/
http://www.hestem.ac.uk/
http://www.sigma-network.ac.uk/
http://www.mathstore.ac.uk/?q=node/2049
http://supportcentre.maths.nuim.ie/mathsnetwork/
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4.3 Mathematics technology 

The effect of computer technology on education seems to be greater in mathematics than in any 

other subject. There are two distinct ways in which developments in technology affect learning and 

teaching in mathematics.  The first is that new technology provides opportunities for new 

approaches to teaching and learning (this applies to all disciplines not only to mathematics); the 

second is that advances in technology impact not only on how mathematics is taught but also on 

what mathematics is taught (in this area mathematics is probably unique).  Advances in the 

capabilities and user-friendliness of mathematical software mean that a whole range of problems 

which previously would have needed graduate level skills to solve can now be accessed by first year 

undergraduates.   In this section, we do not cover the use of general computer technology in mathe-

ŵatiĐs eduĐatioŶ ƌatheƌ, ǁe ƌestƌiĐt ouƌselǀes to ǁhat ǁe ǁill Đall ͚ŵatheŵatiĐs teĐhŶologǇ͛, ďǇ 
ǁhiĐh ǁe ŵeaŶ teĐhŶologǇ ǁhose speĐifiĐ puƌpose is ͚doiŶg ŵatheŵatiĐs͛. GeŶeƌal teĐhŶologǇ 
aspects related to learning scenarios have already been treated in section 4.1 and technology-

supported assessment will be discussed in chapter 5. The term ͚ŵatheŵatiĐs technology͛ Đoǀeƌs a 
wide range of different artifacts including: 

 Pocket calculators with different symbolic and/or numerical and/or graphical capabilities 

 Mathematical computer programs: 

o symbolic and numerical ones, e.g. Computer Algebra Systems (CAS) like Maple®, 

Mathematica® or MathCad®; 

o numerical programs like Matlab®; 

o dynamic geometry programs like Cabri and Geogebra; 

o spreadsheet programs. 

 EŶgiŶeeƌiŶg pƌogƌaŵs ďased oŶ ŵatheŵatiĐal ŵodels ǁhiĐh ͚shiŶe thƌough͛ to a ĐeƌtaiŶ 
extent (CAD, FEM, mechanism design, multi-ďodǇ dǇŶaŵiĐs, CFD, …Ϳ. 

There are several potential educational advantages of using such mathematics technology which 

have been identified in intensive research particularly in general mathematics education during the 

past 20 years but risks have also been recognised and discussed in several seminars of the 

Mathematics Working Group (see e.g. Alpers 2006). We give a brief overview of the opportunities 

and risks as far as the mathematical education of engineers is concerned (for further reading see 

(Oates 2009) and the references therein). We start with potential advantages: 

 Visualisation/demonstration: In some topics computer animation can greatly increase the 

effectiveness of the teaching process, for example, in calculus or multivariable calculus (cf. 

Velichova 2008), in the theory of differential equations or in geometry, where CAS can be 

used as demonstration and visualization tools for better conceptual understanding.  

 Explorative approach to learning: CAS can be used as cognitive tools, as they facilitate the 

technical dimension of mathematical activity and allow the user to take action on 

mathematical objects or representations of those objects. This feature can be utilised to 

enable students to explore objects and structures and to discover properties and 

connections e.g. by performing parameter variations.  

 Experimental approach to problem solving: Mathematics programs provide new ways of 

problem solving. In classical paper and pencil work students had to know a certain procedure 

in order to solve a problem and they could not advance once they got stuck in the process. 

Mathematics programs allow students to select different ways of investigating a problem (for 

example finding an approximate solution by looking at the graph of a function instead of 
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getting an exact solution; investigating several related examples to derive a hypothesis or to 

discover a counter-eǆaŵpleͿ aŶd thus iŶĐƌease the studeŶt͛s likelihood of ŵakiŶg pƌogƌess 
with a problem. This is particularly helpful in design problems, e.g. for designing a motion 

function fulfilling certain conditions regarding maximum velocity and acceleration. The 

worksheet interface of CAS allows the lecturer to create easily an experimental environment 

for such problems and the thoughtful (or guided) variation of parameters can enhance the 

understanding of function properties considerably.  

 Realistic modeling:  Mathematics and engineering programs allow the earlier introduction of 

more interesting modelling tasks since some parts of the computation can be delegated to 

the program (for example solution of a non-linear differential equation). This might also 

enable re-sequencing of mathematics instruction since students do not need to have as 

ŵaŶǇ pƌeƌeƋuisites as pƌeǀiouslǇ, ďeĐause theǇ ĐaŶ ͚outsouƌĐe͛ soŵe paƌts of a pƌoďleŵ to a 
program (often the time-consuming but cognitively lower level tasks such as routine 

calculation) and concentrate on other parts (such as the more cognitively demanding 

interpretation of results).  

 Experiencing the work in a real engineering environment: Engineers working in industry face, 

on a daily basis, many problems that either cannot be solved using classical analytical 

methods, or where analytical methods will produce a solution but their implementation will 

be excessively time-consuming, for example in the control and optimisation of a particular 

industrial process. Therefore, the use of application programs which have a mathematical 

basis is ubiquitous throughout the engineering industry.  Training students to use such 

programs in a thoughtful manner is already an essential element of preparing engineering 

students to work in real engineering environments. 

 Change of roles: Using mathematics programs like CAS can help to bring about changes in the 

way classes are conducted, as their usage requires student active participation and 

autonomous activity.  Such activity can also be designed to require interaction among 

students.  The result is that the process of acquiring and developing mathematical knowledge 

becomes more student-centred.  This also changes the role of teachers, who become tutors 

and instructors rather than lecturers (see the analysis of the feedback from students and 

their opinion of the on-line Pilot course in Differential and Integral Calculus in (Norstein et al. 

2004), or the evaluation of studeŶts͛ ƌeaĐtioŶs to the pƌojeĐt utilisiŶg gƌaphiŶg ĐalĐulatoƌs iŶ 
teaching linear algebra at secondary schools, which can be found in (Verweij 2004)). 

 Motivational aspects: Most students are accustomed to using technology such as smart 

phones in their daily life; consequently simply having technology involved can make a huge 

diffeƌeŶĐe iŶ studeŶts͛ attitudes aŶd feeliŶgs toǁaƌds ŵatheŵatiĐs. Therefore increased use 

of mathematics technology may help to improve student motivation. Nevertheless, the 

perception of the students of their achievements might be different: (Galan Garcia et al. 

2005) observed that most students were not aware of the improvements in their knowledge 

and skills, and in their assimilation of the contents presented in class. 

The following risks have been identified and should be addressed when using mathematics 

technology: 

 Loss of basic capabilities: When adapting the mathematical educational process to make use 

of new technological tools one must be aware of the risk that this computer-based learning 

environment may cause an unexpected ƌeduĐtioŶ iŶ studeŶts͛ gƌasp of the ͚traditional 
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ŵatheŵatiĐal Đultuƌe͛. This is Ŷot just a loss of fluency in carrying out procedural 

mathematical tasks brought about by a reduced amount of practice (due to using computer 

programs to carry out these tasks), but can also be a more limited understanding of core 

mathematical concepts as the reduced practice may bring with it reduced need to think 

about the basic concepts thereby impacting on overall mathematical reasoning skills. 

 Loss of connection between procedures and understanding: Extensive and exclusive usage of 

CAS can potentially prevent students from making proper connections between the 

techniques used for calculations and conceptual understanding, for example the Gauss 

algorithm for solving a linear system of equations also provides insight into the possible 

solutioŶ tǇpes; siŵplǇ usiŶg a ͞solǀe͟ ĐoŵŵaŶd does Ŷot giǀe this iŶsight. 
 Pure trial and error working style without thinking: There is a danger that students may use 

mathematics and application programs in a largely thoughtless trial and error mode, making 

variations without any particular strategy in the hope that somehow they will achieve what is 

required without having any idea why what theǇ did solǀed the pƌoďleŵ ;͚ŵeƌe ďuttoŶ 
pushiŶg͛Ϳ. Problems must be found where such a strategy is not productive so that students 

are forced to think about the effects of possible variations. 

 Tool dependence aŶd ͚faith͛: When students are no longer able to compute even simple 

examples by hand, they depend totally on what the tool they are using provides.  They also 

have no idea of what to do when a program fails to give them an answer to a problem 

because they do not know what the program is able to do. Although the students do not 

need to know in detail what a program does, they should know which model(s) a program is 

ďased upoŶ ͚iŶ pƌiŶĐiple͛ so that theǇ aƌe aďle to judge ǁheŶ it is, aŶd ǁheŶ it is Ŷot, 
appropriate to use that program. 

The risks show that a naïve introduction of mathematics technology might have detrimental effects. 

It is a challenge to strike the right balance between thoughtful tool usage and training in 

mathematical procedures using paper and pencil. Adequate tasks have to be found to avoid the 

potential risks of using mathematics technology. 

The use of mathematics technology can be meaningfully connected to the competence approach. In 

what follows, we state how the mathematical competencies explained in chapter 2 can be affected 

by the introduction of mathematics technology in the education of engineers.  

 Thinking mathematically: This competency should also include the ability to recognize that 

for some problems there is either a program based on a mathematical algorithm or that it is 

possiďle to iŵpleŵeŶt oŶe͛s oǁŶ ƌoutiŶe to solǀe the pƌoďleŵ within an appropriate 

technical environment. 

 Reasoning mathematically: Technology allows an explorative working style where one makes 

variations, for example to investigate the influence of parameters. At first sight, trial and 

error could replace the need for mathematical reasoning, but in a huge design space it is still 

important to apply mathematical reasoning (for example investigating the influence of 

symbols within a formula) in order to make variations efficiently. Technology also allows 

students to perform simulation experiments to find patterns or find counter-examples for 

assumptions. It is vitally important that students should know the difference between proof 

and experimental plausibility. 

 Posing and solving mathematical problems: Technology allows for an experimental problem 

solving style using heuristics, using knowledge about the influence of factors and using pre-
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written numerical solution procedures. With technology learners can set up their own 

experimental environment in which to solve problems. 

 Modelling mathematically: Technology allows students to work with more complex and 

realistic models since work within the model is supported by technology and, indeed, even 

the setup of models can be facilitated by technology (for example, through using simulation 

packages such as Simulink®). In engineering programs, models are often only partially visible, 

so students need to learn to work with technology where the underlying model is not known 

to them. This requires knowledge about strategies for ĐheĐkiŶg oŶe͛s uŶdeƌstaŶdiŶg of the 
workings of the program and also for checking the results. 

 Representing mathematical entities: Technology provides new representations which can be 

used as a cognitive aid for understanding a mathematical concept (for example a 3D plot 

which can be rotated and geometric representations of algebraic expressions). In particular, 

dynamic representations are available which in former times were only possible by 

constructing mechanical devices. Moreover, the possibility of interactive manipulation of 

representations enables the exploration of relations between different representations. 

 Handling mathematical symbols and formalism: Programs still require mathematical symbols 

and formalism as input; sometimes this may be with a program-specific syntax or it may be 

facilitated by pallet-style input. The same is true for the output – this may be mathematically 

rendered or it may be in program-specific syntax (or even a combination of both) – whatever 

the format, students need to learn to understand the program output.  

 Communicating in, with, and about mathematics: Mathematical programs can be used as 

means for communication, when the user documents and presents solutions to problems 

within the program (e.g. CAS or spreadsheet). For this the user has to encode the 

mathematical ideas, objects and procedures with the expressive means which the program 

offers. Students also have to decode such documentation when they use annotated 

worksheets that have been set up by others. 

 Making use of aids and tools: Being able to use efficiently and effectively mathematical and 

mathematics-based application programs is an essential requirement of the engineering 

workplace. Therefore, students should learn at university about the capabilities and 

limitations of such programs, and they should be able to check the plausibility of program 

output in order to use them properly. 

The relationship between technology usage and competence acquisition has (at least) two facets: on 

the one hand using technology can help in the acquisition of competencies, on the other hand 

knowledgeable technology usage requires special additional aspects of each competency. 

The degree of integration of mathematics technology in the mathematical education within a study 

course can be quite different. The taxonomy developed in the thesis of Oates (2009) can be used to 

analyse or to specify the degree of integration. Oates uses the six characteristics presented in the 

table below. The taxonomy gives ideas of where and how integration can take place and it can be 

used to check whether all the necessary measures have been taken in a study course to achieve the 

desired degree of integration. 
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Characteristics  Example of questions asked to examine the degree of 

integration  

A  Access  To what extent do students have access to technology tools, 

e.g. is it compulsory? Do they use their own, or access it in 

computer labs?  

B  Student Facility  How proficient are students with the use of the technology, 

and what assistance is provided to help them?  

C  Assessment  Is technology expected and/or permitted in assessment?  

D  Pedagogy  How and when do the staff and students interact with the 

technology? For example, is it used mainly as a complex 

calculation device and demonstration tool, or to develop 

and explain concepts?  

E  Curriculum  Has the course curriculum, for example content, order of 

teaching, changed to reflect the use of technology?  

F  Staff Facility  Are staff familiar with the use and capabilities of the 

technology, both mathematically and pedagogically?  

A Taxonomy for Integrated Technology Characteristic (Oates 2009) 

4.4 Integrating the mathematics curriculum into the engineering study 

course 

In the competence-based approach that is advocated in this document, it is quite obvious that the 

mathematics curriculum should be strongly linked with the application subjects taught in the 

engineering study course under consideration. The contexts and situations where mathematics plays 

a ƌole duƌiŶg the studǇ Đouƌse pƌedoŵiŶaŶtlǇ appeaƌ iŶ those appliĐatioŶ suďjeĐts ǁhiĐh aƌe ͚heaǀǇ 
useƌs͛ of ŵatheŵatiĐal ĐoŶĐepts aŶd pƌoĐeduƌes. The liŶkage has seǀeƌal aspeĐts that haǀe to ďe 
taken into account: 

 What to do? Chapter 3 shows that there is a vast amount of possible content-related 

competencies such that a suitable subset has to be defined for a study course and this 

procedure should be driven by the needs of application subjects. 

 When to do it? This question has at least two facets: On the one hand this is related to an 

appropriate sequencing within the mathematics modules such that the competencies are 

available in time for concurrently running application modules (like engineering mechanics or 

physics); on the other hand the question is concerned with sustainability and repetition 

when mathematical concepts and procedures are needed in application subjects later on in 

the study course (when to do it again?). 

 Where to do it? When it comes to refreshing basic mathematical concepts and developing 

new application-specific, mostly more-advanced mathematical concepts, this often takes 

place within application subjects. More generally, in a competence-based approach which 

strives for a broader view of mathematics education, the question comes up how the 

acquisition of mathematical competence is distributed over mathematics and application 

modules. 
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In this section we will briefly discuss the above aspects and give some hints to related work. 

For specifying a mathematics curriculum for a concrete engineering study course the mathematical 

challenges provided by the application subjects in the course have to be identified. Willcox & 

Bounova (2004) observed that mathematics staff often do not know about the usage of 

mathematical concepts and procedures in later application classes and staff teaching these 

application subjects do not know about the contents of former mathematics classes, particularly 

when they belong to different departments. This very likely leads to a mismatch (regarding contents 

and notation) between the needs of application subjects and the provision of mathematics classes. 

As a consequence, they advise a strong communication link between both groups. In particular, the 

needs of application subjects should be systematically collected and analysed, be it by questionnaires 

oƌ ďǇ iŶǀestigatioŶ of leĐtuƌe ŵaŶusĐƌipts, iŶ oƌdeƌ to eliĐit ǁhat theǇ Đall the ͚iŵpliĐit ŵatheŵatiĐs 
ĐuƌƌiĐuluŵ͛. 

If the mathematics modules are based on known application needs, then these might also lead to 

enhance motivation in mathematics classes by relating mathematical concepts to interesting 

appliĐatioŶs ƋuestioŶs oƌ iŶtƌoduĐiŶg the ĐoŶĐepts ͚iŶ ĐoŶteǆt. MĐCaƌtaŶ et al. ;ϮϬϭϬͿ ƌepoƌt aďout 
very positive effects on student motivation and engagement by using contexts and activating 

learning strategies. Moreover, the relationships can be investigated in mathematical case studies or 

projects (Mustoe & Croft 1999; Wilkinson & Earnshaw 2000; Alpers 2002; Härterich et al. 2012) 

which might form an obligatory, or at least credited, part of the module. Therefore, the results of the 

rather time-consuming process of identifying connections between mathematics and application 

subjects can also be exploited for such more demanding learning scenarios where many 

mathematical competencies can be addressed (cf. section 4.1). 

It should be mentioned that mathematics has a coherent structure on its own which also has to be 

taken into account to avoid the impression that mathematics is just a set of unrelated ͚ĐhuŶks͛ ǁhiĐh 
might be useful in certain models. Therefore, due caution is called for when basing the mathematics 

education on application needs. 

The second important issue regarding the integration aspects is concerned with when certain 

mathematical concepts and procedures should be learnt by students. Usually, the mathematics 

classes take place during the first two to four semesters (like Mathematics I-IV). This often results in 

problems of availability of mathematical concepts in concurrently running application subjects like 

engineering mechanics or fundamentals of electronics. Rossiter (2008) and Patel & Rossiter (2011) 

advocate a sequencing of mathematical concepts such that the concepts are available shortly before 

they are used in engineering modules. As already stated in the discussion of the first aspect, this 

requires a thorough analysis of the application subjects and close cooperation between those 

responsible. They observed that the approach helped to foster a positive attitude among the 

students regarding the usefulness of the mathematics education (cf. the corresponding reasoning in 

section 4.5 on attitudes). It better enabled students to interconnect mathematical and application 

issues when similar notation and examples were used in mathematics and engineering classes. There 

are certainly limits to this approach as already recognised by Patel & Rossiter (2011) since it might 

lead to unwanted fragmentation of the mathematics curriculum or the mathematical concepts 

needed in an application subject are simply too advanced for early introduction. Then the 

mathematical foundation must be provided – at least in a preliminary way – within the application 

subject, which we deal with below when treating the third aspect.  
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A different problem comes up when there is a larger time interval between the first learning of a 

mathematical concept or procedure in a mathematics class and its later use in engineering classes for 

example on control theory or machine dynamics. Colleagues in application classes often report that 

the required concepts are no longer available, and sometimes students even claim that they have not 

encountered them before. Since it seems quite natural that knowledge fades out to a certain degree 

over time when it is not used, there should be some way to deal with refreshing mathematical 

concepts and procedures, although the simplest answer still is that the responsibility for refreshing 

knowledge lies with the students. There are some approaches to facilitate the refreshing. Allaire & 

WillĐoǆ ;ϮϬϬϰͿ thoƌoughlǇ aŶalǇsed theiƌ Đlass oŶ ͞PƌiŶĐiples of AutoŵatiĐ CoŶtƌol͟ leĐtuƌe ďǇ 
lecture, identified the mathematical concepts and procedures needed for the different lectures and 

provided links to basic mathematics courses where the topics had been dealt with. Moreover, they 

also provided refreshing material for those topics which they identified as particularly problematic 

(like vector calculus and linearisation). The information on necessary mathematics and remedial 

material is distributed befoƌe the leĐtuƌes, aŶd duƌiŶg the leĐtuƌes soŵetiŵes shoƌt ͚flashďaĐks͛ aƌe 
inserted. Students made limited use of the material. Alpers (2000) also analysed the mathematics 

used in a control class for mechanical engineering students and provided interactive refreshing 

material implemented in Maple®. This gave students the opportunity for tailor-made refreshment of 

the material needed in the control class. Yet, the use by the students was also very limited since 

studeŶts eŶǀisaged the ŵateƌial ƌatheƌ as aŶ ͚add-oŶ͛ to the appliĐatioŶ Đlass thaŶ as aŶ esseŶtial 
part of the course. It certainly needs strong involvement of the engineering colleague giving the 

application class to counter this impression.  

There is also a more rigorous approach to ensure that students refresh their former mathematical 

knowledge as is reported from Ireland. Carr et al. (2012) describe an approach where students in 

lateƌ Ǉeaƌs of theiƌ studǇ Đouƌse ;hoŶouƌs degƌeeͿ take a ŵatheŵatiĐal ͞adǀaŶĐed Đoƌe skills͟ test oŶ 
topics and procedures dealt with in earlier years (differentiation, integration, 1st and 2nd order 

differential equations and others). They can sit the test several times but they need a very high score 

(at least 90%) to get any marks for the test (as part of the total marks for the mathematics module in 

that year). This way, an incentive for continuous repetition is created which is also likely to enhance 

sustainability of mathematics education as far as core computational and procedural skills are 

concerned. 

The question where the acquisition of mathematical competence should take place seems to have an 

obvious answer: in mathematics modules of the engineering curriculum. But a more thorough 

analysis reveals that this is certainly not a sufficient answer for several reasons. First, we have the 

timing problem already stated above. Even if one tries to sequence the mathematics modules in a 

ǁaǇ to pƌoǀide the Ŷeeded ŵatheŵatiĐal ĐoŶĐepts aŶd pƌoĐeduƌes ͚just iŶ tiŵe͛ this is Ŷot possiďle 
for more advanced concepts when they are needed early. Hennig & Mertsching (2012) describe a 

situation which is quite usual in German engineering study courses: for bachelor students of 

eleĐtƌiĐal eŶgiŶeeƌiŶg aŶd ƌelated fields a Đouƌse oŶ ͞FuŶdaŵeŶtals of EleĐtƌiĐal EŶgiŶeeƌiŶg͟ is 
offered in the first semester which needs several mathematical concepts for example from vector 

calculus which are dealt with later in mathematics education (as part of multivariate calculus). 

Therefore, Hennig & Mertsching developed a concept for incorporating the teaching of this material 

iŶ the appliĐatioŶ Đouƌse. TheǇ iŶtegƌated ͚shoƌt ŵatheŵatiĐal digƌessioŶs͛ iŶto the appliĐatioŶ 
lecture in order to introduce key mathematical concepts needed for application modelling. An 

essential advantage of this approach is the situated introduction of mathematical concepts which 

relates them directly to authentic problems for electrical engineers. This provides application 
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meaning for the concepts and gives students insight into the usefulness of these concepts for their 

professional work. Since for time reasons the digressions can only be short, the authors provide a 

web-based learning resource where the concepts and procedures are dealt with more deeply. The 

authors concentrated on those mathematical topics which according to a questionnaire turned out 

to be the most difficult ones for students. They recognise that their approach is restricted such that a 

more comprehensive treatment of the issues in mathematics modules is still required. The latter 

might be facilitated when students are already able to attach application meaning to the 

mathematical concepts. 

In engineering classes that take place after the mathematical education, i.e. in later years of the 

study course, the refreshing of necessary mathematical concepts and procedures usually takes place 

within the application subjects themselves. When mathematical concepts additional to those 

provided in the mathematical education are needed, they also have to be taught in application 

classes. This might for example be the case for mathematical procedures in signal processing or in 

using the finite element method (cf. section 3.4 in this document). 

A broader view of where the acquisition of mathematical competence takes place must not be 

restricted to the treatment of mathematical concepts and procedures but has to include the 

defiŶitioŶ of ŵatheŵatiĐal ĐoŵpeteŶĐe as stated iŶ Đhapteƌ Ϯ of this doĐuŵeŶt: ͞the ability to 

understand, judge, do, and use mathematics in a variety of intra- and extra-mathematical contexts 

and situations in which mathematics plays or could play a role͟ (Niss 2003a, p.6/7). It is quite clear 

that – even with the foundation laid in the mathematics modules of the engineering curriculum – the 

major part of understanding and using mathematics in extra-mathematical contexts takes place in 

application subjects. To make this more specific, it is appropriate to use the dimensions for specifying 

pƌogƌess iŶ ĐoŵpeteŶĐe aĐƋuisitioŶ ǁhiĐh haǀe ďeeŶ desĐƌiďed iŶ seĐtioŶ Ϯ.ϭ: ͚degƌee of Đoǀeƌage͛, 
͚ƌadius of aĐtioŶ͛, aŶd ͚teĐhŶiĐal leǀel͛. Fiƌst of all, the ƌadius of aĐtioŶ, i.e. the set of ĐoŶteǆts aŶd 
situations where a competency can be activated, should definitely be extended when mathematical 

concepts and procedures are used in application subjects. Regarding the ͚degƌee of Đoǀeƌage͛ 
dimension, there are differences with respect to the single competencies stated in section 2.1 which 

make up the overall mathematical competence. The subsequent statements are meant to present 

some ideas on possible extensions within this dimension in engineering courses but are definitely not 

a comprehensive treatment of the issue:  

 Thinking mathematically: When mathematical concepts are used in an engineering course to 

answer practical questions (for example find suitable dimensions in the design of a machine 

element), students see better what kind of questions can be treated mathematically, i.e. how 

a mathematical approach can help.  It is also easier to see the value of abstraction if students 

recognise the same mathematical concept in different application scenarios. On the other 

hand, students see also the limits of mathematical approaches (importance of experience to 

set up an initial design, make decisions with vague conditions for reasoning). 

 Reasoning mathematically: The main aspects of this competency are probably already 

covered in mathematics education but they are trained again in model development and in 

trying to solve problems or to achieve properties in application models.  

 Posing and solving mathematical problems: It might be the case that students learn new 

aspects of this competency, e.g. by learning new problem solving strategies for dealing with 

uncertainty or with large design spaces. 
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 Modeling mathematically: This competency is definitely the one which is covered to a large 

extent in application subjects. There, modeling principles are developed and used to set up 

real models where finding an adequate modelling granularity is a major issue. Students also 

have to interpret the results of working within the mathematical models from an application 

perspective and have to validate the models, e.g. by making experiments and taking 

measurements. 

 Representing mathematical entities: The main aspects of this competency are probably 

already covered in mathematics education but they are covered again in applications where 

finding adequate representations for conveying messages to a certain audience is an 

important task. 

 Handling mathematical symbols and formalism: There will probably be no new aspects 

turning up in engineering subjects. The competency will be just used and developed. 

 Communicating in, with and about mathematics: The new aspect of this competency in an 

engineering course will be the (oral and written) understanding of and own presentation of 

mathematical reasoning and procedures in context whereas in the mathematical part this 

often takes place in isolation. Students have to explain and justify engineering decisions by 

making oral or written mathematical statements. 

 Making use of aids and tools: Whereas in mathematics education the coverage of this 

competency is mainly restricted to mathematical tools and aids, in engineering courses 

adequate usage of application tools is dealt with which are based on mathematical models 

but display only a restricted visibility of mathematical concepts at the user interface. 

Therefore, the new aspect here is handling such a tool where the underlying mathematics is 

not fully understood. This includes e.g. the ability to test the tool usage with small examples 

that can be computed by hand for control. 

With ƌespeĐt to the ͚teĐhŶiĐal leǀel͛ diŵeŶsioŶ it ǁas alƌeadǇ stated aďoǀe that iŶ soŵe adǀaŶĐed 
application subjects mathematical concepts and procedures can be introduced which have not been 

treated before in the proper mathematics education part. Therefore, an extension in this dimension 

may also occur in the proper engineering part of the programme.  

Regarding all aspects described above it is quite obvious that a strong link between those responsible 

for the mathematical education and those who are in charge of proper engineering courses is 

decisive for achieving a good integration of mathematics into the engineering curriculum. This is 

more likely to happen if there is a certain personal continuity in the delivery of math and application 

education since then lecturers might rather be interested in creating a linkage and having a coherent 

education. This would be helpful in avoiding the dangers of modularisation which might be of 

organisational value but can be very detrimental from a didactical point of view if it leads to a 

compartmentalisation of knowledge. 

4.5 Attitudes 

If – as proposed in this document – it is the ultimate goal of mathematical education of engineers to 

make them mathematically competent, and if this competence is defined as ͞iŶsightful ƌeadiŶess to 
act in response to a certain kind of mathematical challenge of a giǀeŶ situatioŶ͟ ;Bloŵhoj & JeŶseŶ 
2007, p.47), then such readiness is strongly related to the attitude a student has towards mathe-

matics. In their studies on attitudes of engineering students to mathematics in a few British 

universities, Shaw & Shaw (1997, 1999) found out that only about one third of the students were 

motivated, about 75% had the desire to improve their mathematical abilities and a broad range from 
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20% to 66% perceived mathematics as being difficult. According to the authors, the attitude of 

students towards mathematics is more positive when the environment provided by universities is 

perceived as being supportive. This can be achieved by organising support in additional tutorials, 

foundation classes, online materials or mathematical support centres, for example (cf. section 4.2 of 

this document). This can at least prevent students with difficulties in mathematics to turn into 

ŵatheŵatiĐs ͞hateƌs͟ (Shaw & Shaw 1999).  

Booth (2004, p. 18) investigated the different perceptions of mathematics with engineering students 

in more detail and distinguished between three views of mathematics: 

 MatheŵatiĐs is ͞a paƌt of the degƌee pƌogƌaŵŵe͟. 
 Mathematics is a ͞ďasis foƌ otheƌ suďjeĐts͟. 
 MatheŵatiĐs is a ͞tool foƌ aŶalǇsiŶg pƌoďleŵs that oĐĐuƌ iŶ the ǁoƌld …͟. 

IŶ the fiƌst ǀieǁ, ŵatheŵatiĐs is just aŶ ͚isolated suďjeĐt͛, ǁheƌeas iŶ the seĐoŶd it is ͚iŶtegƌated iŶto 
the pƌogƌaŵŵe of studǇ͛ aŶd iŶ the thiƌd ǀieǁ also ͚iŶto the ǁoƌld it desĐƌiďes͛. These diffeƌeŶt kiŶds 
of peƌĐeptioŶ haǀe a ĐoŶsideƌaďle iŶflueŶĐe oŶ the studeŶts͛ ǀieǁ of theiƌ oǁŶ ƌespoŶsiďilitǇ foƌ the 
learning process and their approach to mathematical learning. Booth distinguishes between a 

͚suƌfaĐe appƌoaĐh͛ ǁheƌe studeŶts foĐus oŶ the ͚sigŶ͛, oŶ the deŵaŶds of the Đouƌse aŶd oŶ the 
ƌepƌoduĐtioŶ of Đouƌse ŵateƌial, aŶd a ͚deep appƌoaĐh͛ ǁheƌe studeŶts foĐus oŶ ŵeaŶiŶg, ĐoŶstƌuĐt 
relations between mathematics and engineering subjects and also to their wider experience. If 

students see mathematics (or a certain part of mathematics since this can differ from topic to topic) 

as an isolated subject they are likely to apply a surface approach to learning whereas a view relating 

mathematics to other subjects and the world will rather lead to a deep approach. Therefore, inducing 

in students a realistic perspective of the role of mathematics in the study programme as well as in 

later engineering life is important for achieving a deep learning approach.  

In heƌ iŶǀestigatioŶ of the ͞MatheŵatiĐal DispositioŶ of “tƌuĐtuƌal EŶgiŶeeƌs͟, GaiŶsďuƌg ;ϮϬϬϳͿ 
pƌoposes that ŵatheŵatiĐal eduĐatioŶ should stƌiǀe foƌ a siŵilaƌ ͞ŵatheŵatiĐal dispositioŶ͟ as she 
fouŶd ǁith stƌuĐtuƌal eŶgiŶeeƌs aŶd ǁhiĐh she teƌŵed ͞skeptiĐal ƌeǀeƌeŶĐe͟: ͞ŵatheŵatiĐs is a 
poǁeƌful aŶd ŶeĐessaƌǇ tool that ŵust ďe used judiĐiouslǇ aŶd skeptiĐallǇ͟ ;p. ϰϵϴͿ. OŶe Đould 
denote such an attitude also as critical appreciation: mathematics can be of help in many engineering 

situations but it is not the only constituent of engineering work since there are many other aspects to 

be taken into account which are different from those that can be stated and treated in a 

mathematical way. 

In general mathematics education, the topic of attitude is discussed undeƌ the headiŶg of ͞ďeliefs 
aŶd affeĐts͟ ;“ĐhoeŶfeld ϭϵϵϮ, Caƌdella ϮϬϬϴͿ. Heƌe, it is also eŵphasised that the ďeliefs aďout 
mathematics are largely shaped by the experience in school education and that – on the other hand 

– these beliefs shape the mathematical behaviour shown by students. Therefore, it is quite important 

to create experiences where mathematical thinking is seen as a process which helps in capturing and 

solving real problems and not just a five-minute activity to work on an isolated exercise. Only by 

having made such experience will the students in their later engineering life be willing to use 

mathematical thinking for solving their engineering problems. 

How can mathematical education encourage and strengthen a perception of mathematics which is 

integrated in the engineering world (be it educational or a real work environment) and where 

mathematics is critically appreciated as relevant part of the problem solving process? The 
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competence approach already intends to make students see what mathematics can do for them 

;ŵatheŵatiĐal thiŶkiŶgͿ aŶd it eŵphasizes the ͚aĐtioŶ ĐhaƌaĐteƌ͛ aŶd the ĐoŶteǆtualisatioŶ siŶĐe 
students should be enabled to master the mathematical challenges they meet in engineering 

contexts. Therefore, the competence approach seems to be particularly suitable for creating and 

supporting a desirable attitude towards mathematics. There will still be large differences regarding 

mathematical abilities but having a good understanding of what mathematics can do in engineering 

contexts and a realistic perception of own abilities (What can I do myself, where do I need an 

expert?) should lead to a realistic und helpful attitude for a professional engineer.  
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5 Assessment 
The constructive alignment principle, as presented by John Biggs and Catherine Tang in the book 

͞TeaĐhiŶg foƌ QualitǇ LeaƌŶiŶg at UŶiǀeƌsitǇ͟ iŶ ϭϵϵϵ, has had aŶ iŶĐƌeasiŶg iŵpaĐt oŶ the teaĐhiŶg – 

learning – assessing cycle at many universities. There is now a fourth edition of the book available 

(Biggs & Tang, 2011). Furthermore many short articles on the subject can be found on the internet. 

One guideline in constructive alignment (there is of course a lot more to it) is that the planning of a 

course or a module must give answers to three questions:  

 What will the students learn?  

 What will the students do to learn?  

 Hoǁ ĐaŶ the studeŶts͛ kŶoǁledge ďe eǀaluated?  

In this chapter we discuss the third question, that of assessment. Assessing and grading are 

extremely important parts of the teacher͛s work. The grade achieved by a student, in relation to 

what other students have achieved, can determine his/her future, the first job, a PhD education for 

instance. The students know this and find it in general extremely annoying – it may even have a 

strong negative impact on the interest in the subject – if the assessment is considered unfair or if it 

seems to be safe to cheat to get a better grade. 

We begin with an overview of the different forms of assessment that are in use around Europe and 

were identified in a SEFI MWG project, the assessment project, reported at the SEFI MWG seminar in 

Vienna 2004 (Lawson 2004a). 

5.1 Forms of assessment 
The most common assessment method is a written examination, with closed books, at the end of the 

course. Less common is a written examination with open books or computer facilities to support the 

problem solving. One argument for allowing computers and/or advanced calculators is that the 

assessment situation should be as realistic as possiďle, i.e. it should ŵiƌƌoƌ the eŶgiŶeeƌs͛ futuƌe 
work. This argument applies in particular at a later stage of the education. However, modern 

advanced electronic equipment can communicate wirelessly over long distances. Therefore, we 

cannot claim legal certainty in these assessment situations unless other assessment methods, such as 

oral presentations, are added. The work done with support of computers etc. is then more to be seen 

as a part of the learning process. Still it can be reasonable that this work is done under some time 

pressure as that indeed is a part of the future work situation. 

We have to take into account that modern advanced calculators are more or less equivalent to open 

source assessment. To best support our students, legal certainty should never be neglected. 

Another difference worth mentioning is the duration of the written exam. In some countries four or 

five hours are standard, in others only one or two. It is in general not possible to evaluate every 

aspeĐt of a studeŶt͛s knowledge, all we can do is to spot-check. But the shorter the duration of a 

written exam the less of the contents can be covered and the more it is open to gambling strategies. 

The shorter duration can be compensated by additional assessed activities, for instance, as in many 

central European institutions, by a follow-up oral examination, either for all students or for those 

that scored well enough to get a higher grade. Teachers comment on oral examination that it is 

highly staff intensive but gives the best opportunity to test in-depth understanding. 
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Take-away assignments are used at several institutions, but always as one amongst a number of 

methods of assessment and never as the only or primary method. They give students an opportunity 

to explore more realistic problems than they can in an ordinary written examination and for this 

reason often require the use of computer software to complete the assessment task. Some teachers 

have reservations about this method of assessment because it is impossible to be certain that the 

student submitting the work actually did it for him/her-self. When the take-away assignment is 

followed up with an oral presentation of the work the legal certainty is stronger. 

Only a few institutions use multiple-choice tests and those that do use them do so only occasionally. 

Such tests can be cheap to administer as they can be computer delivered and marked. They can be 

useful in giving formative feedback during the course. There are reasons to believe that the use of 

this kind of computer-supported assessment is increasing. We will discuss this in detail later in this 

chapter. Again it is impossible to be certain that the student submitting the work actually did it for 

him/her-self, unless the test is implemented under invigilation and on computers that are not 

connected to any net. Furthermore, as all that is marked is the student's final answer, they have 

limitations when being used for summative assessment. 

Other methods of assessment such as project work, group work and oral presentations are not 

widely used. However, when it comes to examination of mathematical competencies, these methods 

can be more interesting. It is difficult to give individual grading of group work, but individual time-

logs, progress-logs and contribution reports together with the project report can support the grading. 

We will return to this matter later in the chapter. 

5.2 Requirements for passing 
In the previous section we recalled the findings of the SEFI MWG assessment survey; the major part 

of the assessment is based on a traditional final written exam with closed books. Also the 

construction of these exams is similar across Europe, possibly around the world. Most written exams 

consist of a number of problems more or less similar to the problems in the textbooks, each given a 

certain maximum score and together covering a major part of the intended learning outcome. When 

marking an exam the examiner gives the student a score for each problem depending on how 

suĐĐessful the studeŶt͛s atteŵpt to solǀe the pƌoďleŵ turned out to be. The examiner then decides 

ǁhetheƌ the studeŶt has failed oƌ passed aŶd ǁhetheƌ to aǁaƌd a ďetteƌ gƌade thaŶ just ͚passed͛. 
TƌaditioŶallǇ this deĐisioŶ is eŶtiƌelǇ depeŶdiŶg oŶ the studeŶt͛s total sĐoƌe. The liŵit ďetǁeeŶ fail 
and pass is very often set to a percentage of the maximum score. This percentage varies between 40 

and 60. The grading systems vary from country to country, sometimes between universities in the 

same country. When the ETCS grading system is adopted across Europe it will be of interest to 

investigate the equality of the grading. But even then the differences between the course modules at 

different universities will make the comparison very problematic. The aim of this section is to discuss 

the requirements for passing related to the expected learning outcome.  

Expected learning outcomes specify depth and what students should be able to do at the end of the 

module. This specification consists of a series of statements of the type: `On successful completion of 

this module students will be able to' followed by a verb like calculate, solve, explain or prove. Not 

only content-related competencies, knowledge and skills should be included here. If we expect the 

students to achieve a certain level of one of the eight competencies, then we have to state that in a 

way that can be understood by the students. If we cannot communicate to the students what we 

expect them to learn, we cannot demand or expect that they learn it.  
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To improve quality in teaching and learning, if we adapt to the constructive alignment principle, we 

have to state the expected learning outcome in a way that supplies the students with a proper 

guidance for their learning. We tell the studeŶts: ͞This is ǁhat ǁe ǁaŶt Ǉou to leaƌŶ to do aŶd ǁheŶ 
you can do it, you will pass͟. But the alignment should not be within the courses only, but also 

between courses that together form a programme. The expected learning outcome statement also 

informs ouƌ eŶgiŶeeƌiŶg Đolleagues of ǁhat theǇ ĐaŶ eǆpeĐt the studeŶts to kŶoǁ; ͞a student who 

passed this Đouƌse ŵodule is, oƌ has ďeeŶ, aďle to do ǁhat is stated heƌe͟. But an improved quality in 

the education is not achieved automatically just by applying constructive alignment thoughts. It is of 

course heavily dependent on what the students actually learn. Thus, there is a strong argument for 

aligning the expected learning outcome and the requirements for passing in a way that leads to 

equivalence ďetǁeeŶ ͚passiŶg the eǆaŵ͛ aŶd ͚ďeiŶg aďle to do all that is stated͛. “tatiŶg the eǆpeĐted 

learning outcome and aligning this to the course work and to the requirements for passing is a 

delicate task. We have to decide what all students must be able to do after the course module, 

design the course work so it leads to this ability and also assess the skills and knowledge in a way that 

distinguishes between those that can and those that cannot. But still we shall inspire and help all 

students to go deeper into the stuff and also assess this deeper understanding. 

The prevailing principle mentioned aďoǀe: ͞A studeŶt ǁho is giǀeŶ a ĐeƌtaiŶ peƌĐeŶtage of all 
possiďle poiŶts oŶ a ǁƌitteŶ fiŶal eǆaŵ ǁill pass͟, should Ŷot ďe applied if ǁe ǁaŶt to assuƌe ƋualitǇ 
in the education. In Aligning teaching and assessment to curriculum objectives, John Biggs states: 

͞The logiĐ of aǁaƌdiŶg a pass to a studeŶt oŶ a seĐtioŶ of a Đouƌse iŶ ǁhiĐh that studeŶt has alƌeadǇ 

failed is diffiĐult to gƌasp͟ ;Biggs ϮϬϬϯͿ. To pass, the student should instead have demonstrated an 

acceptable level of skill, knowledge or competence for every part of the expected learning outcome. 

We haǀe to ƌethiŶk the assessŵeŶt ŵethods iŶ oƌdeƌ to eŶsuƌe that the studeŶts͛ aĐhieǀeŵeŶt iŶ 
every part of the expected learning outcome is assessed. 

In the rest of this section we will deal with content-related competencies, knowledge and skills which 

can be assessed by traditional final written exams, or technology supported assessments like 

multiple choice tests, or a combination of these. We assume that a pass-level is set for every part of 

the course/module and discuss how the assessment can be designed. 

The most basic skills and knowledge can preferably be assessed by computer-supported tests. Using 

a platform similar to MapleTA® the test can consist of a number of problems/questions picked at 

random from a large question-bank. The students can do the test several times and it is then 

reasonable to demand that they can answer all questions correctly. As these tests are an essential 

part of the requirements for passing they should be invigilated, for the sake of legal certainty. This 

part of the expected learning outcome can also be assessed by written tests during the course. In this 

Đase the tests ĐaŶŶot ďe doŶe ƌepeatedlǇ aŶd ŵiŶoƌ ͚ŶuŵeƌiĐal͛ eƌƌoƌs ŵaǇ ďe aĐĐepted. 

The final written exam then can focus on the not so basic skills and knowledge and a deeper 

understanding of the subject. The exam can be split into two parts, one that only covers methods 

and procedures which can be rather complicated but standardised and theoretical questions which 

require a limited understanding and a second part covering problem solving and a higher level of 

understanding. To pass the student must score well on every item of the first part. The second part is 

used oŶlǇ foƌ gƌades aďoǀe ͚passed͛. Oƌ the eǆaŵ ĐaŶ ĐoŶsist of a number of items where the student 

can show both low and high level of understanding or capability to apply either standard techniques 
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or genuine problem solving in the same field. The criterion for pass is then to score reasonably well 

on all items.  

When other competencies are added to the expected learning outcome the assessment must consist 

of several different parts. In the next section we will discuss how to assess some other competencies. 

5.3 Assessing competencies  
The competencies provide a framework for our discussions and thoughts about what we expect our 

students to be able to do with the mathematics they have learnt, not directly related to a specific 

field of mathematics. Most competencies are developed when the student studies different subjects, 

Ŷot oŶlǇ ŵatheŵatiĐs. Foƌ iŶstaŶĐe the studeŶt͛s ĐoŵpeteŶĐe iŶ ŵatheŵatiĐal ŵodelliŶg ĐaŶ ďe 
improved in any subject where mathematical models are in use. Therefore the competencies are also 

to be seen as expected learning outcomes of the programme - the entire education. It would be a 

benefit for the education if at least some mathematical competencies were included among the 

general competencies that are, or ought to be, included in the description of the expected learning 

outcomes of the engineering programme. We could then discuss with our engineering colleagues 

how each competence is best developed, what the student must do to obtain the competence and 

how we shall assess it. Some of the competencies are best developed in project work similar to 

bachelor or master thesis projects. Others are mainly developed in studies of mathematics. Thus, in 

the very near future we must broaden this discussion and include engineering colleagues and 

programme managers. There is much to be done in this field. 

When the expected learning outcomes are stated in terms of both knowledge and skills and 

competencies we have to rethink the assessment. For most of the competencies the traditional end-

of-course assessment is not enough. For some, it is. The competence handling mathematical symbols 

and formalism is, to some extent, assessed in any written exam. Reasoning mathematically can be 

assessed by theory questions in the exam; true-false questions in particular are suited for this: 

͚CoŶĐlude ǁhetheƌ the folloǁiŶg stateŵeŶt is tƌue oƌ false aŶd pƌoǀe Ǉouƌ ĐoŶĐlusioŶ͛.  

Otheƌ ĐoŵpeteŶĐies ĐaŶ ďe assessed ǁhile theǇ aƌe leaƌŶed aŶd pƌaĐtised. UsiŶg Biggs͛ ǁoƌds: ͞The 
leaƌŶeƌ shall iŶ a seŶse ďe ͚tƌapped͛, aŶd fiŶd it diffiĐult to esĐape ǁithout leaƌŶiŶg ǁhat is iŶteŶded 

should ďe leaƌŶed͟ ;Biggs ϮϬϬϯ, p. ϮͿ. The assessŵeŶt theŶ ĐaŶ ĐoŶsist of aŶ oďseƌǀatioŶ of the 
learning process and a judgment of the final result of that process. We do not have to arrange special 

assessment sessions. 

The competencies posing and solving mathematical problems or modelling mathematically together 

with all the others, in particular communicating in, with, and about mathematics and making use of 

aids and tools can be practised and assessed by asking individual students or groups of 2 – 4 students 

to solve genuine mathematical problems or implement mathematical models and then present their 

solution orally and/or in a written report to a teacher-student audience. The problem solving or 

modelling can include numerical calculations or experiments using software, the presentation can 

include graphical representations of the result. All this can be done as a minor part of a single course 

module or as a larger project. When the project is a joint work by two or more students it is 

important that we observe the process as well. We will have to decide whether all students in a 

group will fail or pass whether they get the same grade. This decision can be grounded on individual 

time-logs, showing the individual effort, progress-logs, showing the progress of the group, and a 

contribution report, showing how the individuals have contributed to the joint work. In the case 

where the students are only supposed to work with a given mathematical model and improve their 
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ability to use software in the implementation of the model, it can be sufficient to observe that it 

works and at the end check the implementation.  

The communication competence can be practised and assessed in class, working with the ordinary 

exercises from the text book. One such method is often called ͚tiĐkiŶg͛. The teaĐheƌ seleĐts a Ŷuŵďeƌ 
of exercises or theoretical questions such as true-false statements. Every student solves all or some 

of the problems, perhaps together with other students. They then prepare to present their solutions 

to the other students in class, using for instance the black board. They tick-mark which exercises or 

questions they are prepared to talk about and the teacher decides who will present what. This 

activity is good not only for communication skills; it also activates the learners, which many students 

comment on in course evaluations. Ticking can be a mandatory part of the assessment or an optional 

part for instance giving bonus points to the final exam, mainly depending on how the expected 

learning outcomes have been stated. The studeŶt͛s peƌfoƌŵaŶĐe aŶd the ƋualitǇ of the eǆplaŶatioŶs 
can be graded, but at an early stage of the education it may be enough to reward the willingness to 

try to explain.  

IŶ a ͚tiĐkiŶg͛ aĐtiǀitǇ also the ĐoŵpeteŶĐe iŶ ŵatheŵatiĐal ƌeasoŶiŶg ĐaŶ ďe deǀeloped aŶd tested, iŶ 
particular when true-false statements are used.  In a written exam students sometimes feel cheated 

when they give an incorrect answer to such a question. The statement reminds them of a true 

statement but some word or minor part is altered to make it false. It takes quite a good 

understanding of both the concepts and the logic to give a correct answer and to prove it: perhaps 

more than we can expect from an average student. Thus, we have to be careful when selecting 

statements for written exams. In a ticking activity it is not that crucial, as an incorrect answer from 

one student can benefit the entire group by the discussion that the mistake may lead to.    

In this section we have just presented a rough overview of important aspects and some ideas related 

to the assessment of competencies. For more information we refer the reader to Højgaard (2009). 

5.4 Technology-supported assessment 
In this section we will discuss how technology may support formative assessment during the course 

and summative assessment after the course (or course module).  

In its most primitive setting a test suitable for a computer-supported assessment system consists of a 

number of multiple-choice questions comprising a question together with one correct answer and a 

number of incorrect answers (distractors). The distractors must be close to the correct answer. The 

student has to select the correct answer to all or most questions in order to pass the test or to get a 

positiǀe feedďaĐk. The studeŶt͛s ǁoƌk is Ŷot siŵplified oƌ iŵpƌoǀed; he/she Đould do the saŵe ǁith 
paper and pen, so long as the questions are similar to those in the textbook. The advantage for the 

teacher is that once the system is there and a suitable set of exercises or questions are imported to 

the system, the system will do the work. The advantage for the student is that he/she can often do 

the test anywhere and at any time. If the test is created by a randomised selection of questions out 

of a large question bank the student can do the test many times. He/she will get immediate feedback 

aŶd the teaĐheƌ ǁill get iŵŵediate iŶfoƌŵatioŶ aďout the studeŶt͛s pƌogƌess. The Ŷeed foƌ ŵultiple-

choice question decreases if the test system is supported by a computer algebra system since such 

programs are able to check mathematical input. But yet there can be specific demands on how the 

answer is given or formulated (for example the use of certain variable names). A correct answer in a 

͚ǁƌoŶg͛ format is considered to be an incorrect answer by the program, confusing the student, of 

course. One challenge for the teacher is to find questions that assess a deeper understanding of the 
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subject and still have only one correct answer. Another challenge is to rethink the assessment and 

find questions that could not be asked when only paper and pen were available. 

The feedďaĐk to the studeŶt iŶ a siŵple sǇsteŵ ĐoŶsists oŶlǇ of a ŵaƌk of ͚ĐoƌƌeĐt͛ oƌ ͚iŶĐoƌƌeĐt͛; the 
student has to find out what to do to improve. A more advanced system includes also learning 

support for the students. There are many reasons, and also attempts, still visionary, to strive towards 

complete, computer-supported systems, the so-called Intelligent Tutoring Systems (ITS), where the 

student gets information not only about his/her errors or mistakes but also about underlying 

misconceptions or lack of knowledge, together with support to fill the gaps. Currently, the student 

needs help from a human teacher to figure out the nature of the misconceptions and what to do to 

improve. Some of this can be e-support linked to the test; some may be personal given by the 

teacher or a support centre on request from the student. The nature of the support can also vary 

fƌoŵ ͚ƌead this eǆaŵple͛ oƌ ͚ǀieǁ this eǆplaŶatioŶ͛ to ͚ƌead agaiŶ Đhapteƌ X iŶ Ǉouƌ teǆtďook͛. 

There are specific problems with the legal certainty when computers are used in summative 

assessment or when students get some kind of credit (bonus points) for the performance in a 

formative assessment. In general, the computers at universities are connected to a network and to 

the internet. To prevent cheating the network connections must be closed, perhaps some other 

pƌogƌaŵs ŵust ďe ďloĐked aŶd the studeŶts͛ ǁoƌk ŵust ďe iŶǀigilated.  If the number of students is 

greater than the number of available computers, the need for randomised tests is obvious. The tests 

cannot be too similar otherwise the last students can have some help from the first, since all tests 

must be of the same difficulty.  If the test is done out of campus or out of office hours then the 

examiner does not know who actually took the test. For these reasons at most a minor part of the 

entire assessment should be computer-supported and not invigilated. 

IŶ the papeƌ ͚A review of computer-assisted assessment͛, ďǇ GƌáiŶŶe CoŶole aŶd Bill WaƌďuƌtoŶ 
(2005), the authors give a survey of both the use of technology for assessment and of the research 

oŶ this use. Theƌe is aŶ oďǀious Ŷeed foƌ a thoƌough suƌǀeǇ of todaǇ͛s use of teĐhnology for 

assessment in mathematics and a deep discussion concerning the consequences of that use.   
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6 Conclusions and future developments 
This document adapts the competence concept to the mathematical education of engineers and 

explains and illustrates it by giving examples. It also provides information for specifying the extent to 

which a competency should be acquired. It does not prescribe a particular level of progress for 

competence acquisition in engineering education. There are many different engineering branches 

and many different job profiles with various needs for mathematical competencies such that it does 

not make sense to specify a fixed profile. The competence framework serves as an analytical 

fƌaŵeǁoƌk foƌ thiŶkiŶg aďout the ĐuƌƌeŶt state iŶ oŶe͛s oǁŶ iŶstitutioŶ aŶd also as a desigŶ 
framework for specifying the intended profile. A sketch of an example profile for a practice-oriented 

study course in mechanical engineering is given in the document. The document retained the slightly 

changed list of content-ƌelated leaƌŶiŶg outĐoŵes that foƌŵed the ͚keƌŶel͛ of the pƌeǀious 
curriculum document. These are still important since lecturers teaching application subjects want to 

ďe suƌe that studeŶts haǀe at least aŶ ͚iŶitial faŵiliaƌitǇ͛ ǁith ĐeƌtaiŶ ŵatheŵatiĐal ĐoŶĐepts aŶd 
procedures they need in their application modeling. In order to provide sense-making beyond the 

purely mathematical stƌuĐtuƌe, oǀeƌaƌĐhiŶg theŵes like ͚ŵeasuƌiŶg͛ oƌ ͚fuŶĐtioŶal depeŶdeŶĐǇ͛ ǁeƌe 
identified as was also done in the OECD PISA document. 

In order to offer helpful orientation for designing teaching processes, teaching and learning 

environments are outlined which help students to obtain the competencies to an adequate degree. It 

is clear that such competencies cannot be obtained by just listening to lectures, so adequate forms of 

active involvement of students need to be installed. Topics such as the use of technology and 

integration of mathematics and engineering education are also discussed. Since assessment 

procedures determine to a good extent the behaviour of students and are hence important for really 

achieving progress in competencies, different forms of assessment which are adequate for capturing 

certain kinds of achievements are discussed. 

The main purpose of this document is to provide orientation for those who set up concrete 

mathematics curricula for their specific engineering programme, and for lecturers who think about 

learning and assessment arrangements for achieving the intended level of competence acquisition. 

We envisage future work based on this curriculum framework document to include the following 

issues: 

• Specification of different mathematics curricula for different kinds of engineering study 

courses. An example for such a specification for a practice-oriented study course in 

mechanical engineering can be found in Alpers (2013). 

• Investigation of assessment of competencies: Only if there are satisfactory ways of assessing 

competencies, will they become an integral part of curriculum design. 

• Investigation of the competence acquisition in different learning arrangements: In particular, 

changes in technology are enabling new forms of learning and teaching to take place and 

change will continue into the future.  

• Specification of further example tasks for competency acquisition that serve to improve the 

understanding of the competency concept ďǇ pƌoǀidiŶg ͚ďest-pƌaĐtiĐe͛ eǆaŵples. 
• Studies on workplace mathematics in order to obtain more information on the mathematical 

challenges engineers meet at their later workplaces and not just in the application subjects. 

Future seminars of the Mathematics Working Group will explore these aspects. 
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7 Glossary 
In this section we summarise the definition of those terms that are essential for this document. We 

also state in which section or chapter the reader can find more information. 

Competence cluster:  This term is used in the OECD PISA Assessment Framework (OECD 2009) in order 

to specify the level of progress in mathematical competence. Three levels are distinguished: the 

͚ƌepƌoduĐtioŶ Đlusteƌ͛, the ͚ĐoŶŶeĐtioŶs Đlusteƌ͛, aŶd the ͚ƌefleĐtioŶ Đlusteƌ͛. (section 2.1) 

Competence profile: A well-specified level of mathematical competence that makes up a 

mathematical curriculum for a certain study course. It contains the specification of the desired 

pƌogƌess iŶ ŵatheŵatiĐal ĐoŵpeteŶĐe iŶ the diŵeŶsioŶs ͚degƌee of Đoǀeƌage͛, ͚ƌadius of aĐtioŶ͛, aŶd 
͚teĐhŶiĐal leǀel͟. (section 2.3) 

Connections cluster:  This is a level of progress in gaining mathematical competence. It consists of 

abilities where students have to connect knowledge acquired before or they have to apply it to 

situations and contexts which are at least slightly different from those where they first used it. 

(section 2.1) 

Core Zero: This is a part of the content-related learning outcomes specified in chapter 3. Core Zero 

comprises learning outcomes regarding essential material that no engineering student can afford to 

be deficient in these topics.  (section 3.1) 

Core Level  1: This is a part of the content-related learning outcomes specified in chapter 3. Core level 

1 comprises the knowledge and skills which are necessary in order to underpin the general 

Engineering Science that is assumed to be essential for most engineering graduates. Items of basic 

knowledge will be linked together and simple illustrative examples will be used.  (section 3.2) 

Degree of coverage: This is one of the dimensions in which progress in mathematical competence is 

ŵeasuƌed. It is ͞the eǆteŶt to ǁhiĐh the peƌsoŶ ŵasteƌs the ĐhaƌaĐteƌistiĐ aspeĐts͟ of a ĐoŵpeteŶĐǇ 
(Niss 2003a, p. 10) (section 2.1) 

Mathematical Competence:  ͞The ability to understand, judge, do, and use mathematics in a variety 

of intra- and extra-mathematical contexts and situations in which mathematics plays or could play a 

role͟ (Niss 2003a, p.6/7).  (chapter 2) 

Mathematical Competency:  Mathematical competence is split up into eight distinguishable but 

overlapping mathematical competencies which are thinking mathematically, reasoning 

mathematically, posing and solving mathematical problems, modeling mathematically, representing 

mathematical entities, handling mathematical symbols and formalism, communicating in, with and 

about mathematics, making use of aids and tools. (section 2.1) 

Level 2: This is a part of the content-related learning outcomes specified in chapter 3. Level 2 

comprises specialist or advanced knowledge and skills which are considered essential for individual 

engineering disciplines. Synoptic elements will link together items of knowledge and the use of simple 

illustrative examples from real-life engineering. (section 3.3) 

Level 3: This is a part of the content-related learning outcomes specified in chapter 3. Level 3 

comprises highly specialist knowledge and skills which are associated with advanced levels of study 

and incorporates synoptic mathematical theory and its integration with real-life engineering 
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examples. Students would progress from the core in mathematics by studying more subject-specific 

compulsory modules (electives). These would normally build upon the core modules and be expected 

to correspond to the outcomes associated with level 2 material. Such electives may build additionally 

on level 1, requiring knowledge of more advanced skills, and may link level 1 skills or introduce 

additional more engineering-specific related topics.  (section 3.4) 

Overarching theme: IŶ oƌdeƌ to fosteƌ ͚oǀeƌaƌĐhiŶg͛ seŶse ŵakiŶg, iŶ the OECD PI“A aŶd otheƌ 
documents the content-related competencies have not been organized according to the traditional 

aƌeas of ŵatheŵatiĐs ďut ƌatheƌ aloŶg soŵe geŶeƌal theŵes, Đalled ͞oǀeƌaƌĐhiŶg ideas͟ iŶ ;OECD 
ϮϬϬ9Ϳ. “uĐh theŵes aƌe foƌ eǆaŵple ͞ƋuaŶtitǇ͟, ͞fuŶĐtioŶal depeŶdeŶĐǇ͟ oƌ ͞data aŶd ĐhaŶĐe͟. 
(chapter 3) 

Radius of action: This is one of the dimensions in which progress in mathematical competence is 

ŵeasuƌed. It Đoŵpƌises the ͞ĐoŶteǆts aŶd situatioŶs iŶ ǁhiĐh a peƌsoŶ ĐaŶ aĐtiǀate͟ a ĐoŵpeteŶĐǇ.  
(Niss 2003a, p. 10)  (section 2.1) 

Reflection cluster: This is a level of progress in gaining mathematical competence. It is concerned 

with abilities where students have to apply mathematics in new contexts and situations, so to reflect 

upon which mathematical concepts to use and to combine, how to formulate a mathematical 

problem and how to combine existing or new concepts to solve them.  (section 2.1) 

Reproduction cluster: This is a level of progress in gaining mathematical competence. It comprises the 

ability to work on tasks where students are required to recall or reproduce facts, procedures, 

manipulations, tool usage patterns learned and practiced before in familiar contexts and situations.  

(section 2.1) 

Technical level: This is one of the dimensions in which progress in mathematical competence is 

ŵeasuƌed. It ͞iŶdiĐates hoǁ ĐoŶĐeptuallǇ aŶd teĐhŶiĐallǇ adǀaŶĐed the eŶtities aŶd tools aƌe ǁith 
ǁhiĐh the peƌsoŶ ĐaŶ aĐtiǀate the ĐoŵpeteŶĐe͟.  ;Niss ϮϬϬϯa, p. ϭϬͿ  (section 2.1) 
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10 Appendix 
Section 2.2 of this document contains an example task from mechanical engineering where the 

competencies are necessary for successful work. In this appendix we provide additional examples 

which come from a purely mathematical environment, from the area of electrical engineering and 

from civil engineering such that we cover the other main areas of application. We consider such 

examples as very important for understanding the competence concept and for getting ideas to 

iŵpleŵeŶt it iŶ oŶe͛s oǁŶ teaĐhiŶg. 

1. On a slide there are the graph of a function and several candidates for the graph of the 

derivative. Discuss with your neighbor which one is the correct one and give your vote in a 

voting system. 

Here, students have to reason about the properties of the function and corresponding properties of 

the derivative and its graph (reasoning) in order to find the correct candidate. They also have to 

communicate their line of argumentation to their neighbour (communicating). Moreover, for solving 

the pƌoďleŵ theǇ ĐaŶ thiŶk aďout stƌategies like ͞look foƌ siŵple pƌopeƌties ǁhiĐh should ďe theƌe 
but which are not (exclusion principleͿ iŶ oƌdeƌ to ƌeŵoǀe ĐaŶdidates fƌoŵ the list͟ ;problem 

solving). 

2. A thin circular disc has an evenly distributed charge. Find the electrostatic field at an 

arbitrary point above the centre of the disc. 

To solve this problem, the student first must understand that mathematics can do the job. First the 

real-world problem should be transformed into a mathematical one. The real object, a thin disc, is 

represented by a mathematical object, the set D of points subject to the conditions:             , where R is the unspecified radius of the disc. The, also unspecified, charge Q  is evenly 

distributed which implies that the surface charge density is constant              (thinking 

mathematically). 

 

Then some mathematical modelling should take place; Coulomb´s law                 implies that 

the electrostatic field at a point P  caused by the charge in a small area, dA, is                  , where    is a unit vector pointing from the small surface area towards the point and    is the distance 
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between the small area and the given point. The superposition principle in physics implies that the 

electrostatic field is then given by an integral                      . 

By rotational symmetry the field at a point on the z-axis is directed along the axis. Thus we only have 

to take the vertical component of     into account and the magnitude of the field is  

                               , where r is the distance from the point in the disc to the origin 

(reasoning mathematically, posing and solving mathematical problems). 

Polar coordinates and a straightforward calculation then give the answer                            (handling mathematical symbols and formalism). 

The problem can be altered in order to add more competencies. Moving the point P away from the 

axis or altering the distribution of the charge may lead to integrals which cannot easily be calculated 

by hand (making use of aids and tools). 

The problem presented here can be found in any textbook in electrostatics, but altered in a suitable 

way as suggested above or by altering the charged surface to some surface in space (for instance a 

spherical shell or a torus), the problem turns into a project which can be reported in a student group. 

The report may well include a presentation using graphics (communicating in, with, and about 

mathematics, representing mathematical entities). 

3. A water channel is to be covered by wooden beams such that pedestrians can cross it. What 

kind of beams should be used? 

This is quite an open task, therefore a sketch of a cross section like the one below is helpful to clarify 

the question. The requirement stated in the task is that the set of beams has to carry people, so they 

have to be sufficiently dimensioned for this purpose. In order to achieve this there should be a 

mathematical model to link the loads with the dimensions of the beams (mathematical thinking), so 

it is not necessary to make several trials in order to answer the question.  

 

To set up or choose a model (mathematical modelling) one has to identify the important quantities 

where already a simplification takes place. Beams are modelled as cuboids having length  , breadth   

and height . The span of the channel be  . The stiffŶess of ďeaŵs ĐaŶ ďe desĐƌiďed ďǇ the YouŶg͛s 
modulus E and by the maximum bearable stress        . The most uncertain quantity is the load. 

Here, one has to make some assumptions on the number and weight of the people which are at the 

same time on one beam (or on the average weight and space for one person), and one has again to 

make some simplification, i.e. assume an equal distribution of load over the surface of a beam. This 

gives a value for the surface load p (weight over surface, units N/m2). Now, one should set up or look 

for an already existing model for the stress caused by the load (mathematical modelling). A standard 

model that is available from engineering statics is the idealised model of a line-loaded beam which is 

depicted below. 
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In the model the usual assumption is made that one bearing is fixed (such that the beam cannot 

move) whereas the other one is not fixed in the longitudinal direction such that it can extend (for 

example because of changing temperature). Note that in this model     since the overlaying part 

of a beam is of no relevance to the stress determination. The problem-solving strategy now is to 

compute how the maximum occurring stress depends on the model quantities and then to decide 

how to choose them in order to get below the maximum bearable stress (mathematical problem 

solving).  

Since from the assumptions one gets a surface load but the model works with a line load q (force 

over length, units N/m) a transformation is necessary:      . The next step consists of 

determining the bending moment depending on the place on the x-axis. This can be computed from 

the transversal force function by integration, or it can be found in standard text books or formularies 

on statics:                 . This has its maximum at 
  , since it is a quadratic function with 

zeros at 0 and   (mathematical reasoning). The maximum is           (handling symbols). As can 

be found in any engineering mechanics book (and is developed in an engineering statics class), the 

bending stress depends on the bending moment and varies linearly in the z-direction (in the so-called 

neutral fibre     the stress is 0):                                 . 

Here,    is the moment of inertia for the rectangle (cross section of the beam) with breadth b and 

height h which can also be found in any formulary on mechanics         . By evaluating the stress at     and inserting the maximum bending moment and the moment of inertia one obtains for the 

maximum occurring stress 

                           .  

With        this becomes               (handling symbols).  

As a result one observes that one has to make the height h of a beam large enough such that the 

maximum occurring stress is below the maximum bearable stress (or choose a kind of beam with 

higher maximum bearable stress). An engineer might also use an application programme for 

computing the stress. This would also be valuable when the load assumptions are varied in order to 

see how this influences the result. Such a programme also needs correct input which is particularly 

important regarding the load input (line load, surface load). It is important to be able to do a small 

control computation like the above in order to check whether the programme usage is correct 

(making use of aids and tools). Usually, an engineer has to write up the reasoning stated above for 

justifying her/his choice of dimensions (communication competence). 
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